-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
230 lines (195 loc) · 11.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import time
import torch
import numpy as np
import os
import copy
import gc
import pprint
import argparse
import warnings
from datasets import Data
from nodes import Node
from server_funct import Server_update
from client_funct import Client_update
from generator_driver import Generator_Driver
from utils import setup_seed, set_server_method, lr_scheduler, validate
warnings.filterwarnings('ignore')
np.set_printoptions(precision=7, suppress=True)
def generate_matchlist(node_num, ratio = 0.5):
candidate_list = [i for i in range(node_num)]
select_num = int(ratio * node_num)
match_list = np.random.choice(candidate_list, select_num, replace = False).tolist()
return match_list
_utils_pp = pprint.PrettyPrinter()
def pprint(x):
_utils_pp.pprint(x)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data
parser.add_argument('--iid', type=int, default=0,
help='set 1 for iid, and 0 for noniid (dir. sampling)')
parser.add_argument('--batchsize', type=int, default=128,
help="batchsize")
parser.add_argument('--dirichlet_alpha', type=float, default=0.5,
help="dirichlet_alpha")
parser.add_argument('--num_classes', type=int, default=8,
help="num_classes")
# System
parser.add_argument('--device', type=str, default='0',
help="cuda device: {cuda, cpu}")
parser.add_argument('--node_num', type=int, default=20,
help="Number of nodes")
parser.add_argument('--T', type=int, default=200,
help="Number of communication rounds")
parser.add_argument('--E', type=int, default=3,
help="Number of local epochs: E")
parser.add_argument('--dataset', type=str, default='OCT',
help="Type of dataset")
parser.add_argument('--data_path', type=str, default='./',
help="data_path")
parser.add_argument('--select_ratio', type=float, default=1.0,
help="the ratio of client selection in each round")
parser.add_argument('--local_model', type=str, default='CNN',
help='Type of local model: {CNN, ResNet20, ResNet18}')
parser.add_argument('--exp_name', type=str, default='FirstTable',
help="experiment name")
# Server function
parser.add_argument('--server_method', type=str, default='fedavg',
help="FedAvg, or others")
# Client function
parser.add_argument('--client_method', type=str, default='local_train',
help="client method")
parser.add_argument('--optimizer', type=str, default='sgd',
help="optimizer: {sgd, adam}")
parser.add_argument('--lr', type=float, default=0.04,
help='learning rate')
parser.add_argument('--local_wd_rate', type=float, default=5e-4,
help='clients local wd rate')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum')
parser.add_argument('--method', type=str, default='FedAvg',
help="method")
parser.add_argument('--text_encoder', type=str, default='BiomedCLIP',
help="Text_encoder") #CLIP, BiomedCLIP
parser.add_argument('--temperature', type=float, default=1.,
help="scaling") #CLIP, BiomedCLIP
parser.add_argument('--g_iter', type=int, default=100,
help="iterations")
parser.add_argument('--lr_g', type=float, default=0.01,
help="lr_g")
parser.add_argument('--synthesis_batch_size', type=int, default=128,
help="synthesis_batch_size")
parser.add_argument('--freq_g_driver', type=int, default=5,
help="freq_g_driver")
parser.add_argument('--g_batchsize', type=int, default=8,
help="g_batchsize")
parser.add_argument('--lambda_div', type=float, default=1.0,
help="diversity_weight")
parser.add_argument('--lambda_dis', type=float, default=1,
help="bn_weight")
args = parser.parse_args()
#Ensure that each client has samples
if args.dataset == 'Kvasir': random_seeds = [1, 3, 6]
if args.dataset == 'OCT': random_seeds = [0, 1, 2]
lr = args.lr
all_acc, all_recall, all_prec, all_f1, all_auc = [],[],[],[],[]
for random_seed in random_seeds:
gc.collect()
torch.cuda.empty_cache()
args.random_seed = random_seed
args.lr = lr
print('starting run seed', args.random_seed)
setup_seed(random_seed)
now = time.strftime("%Y-%m-%d %H:%M:%S")
print('The starting time :{}'.format(now), flush=True)
args = set_server_method(args)
pprint(vars(args))
if args.select_ratio == 1.0:
select_list_recorder = [[i for i in range(args.node_num)] for _ in range(args.T)]
else:
select_list_recorder = [generate_matchlist(args.node_num, args.select_ratio) for _ in range(args.T)]
setting_name = args.exp_name + '_' + args.dataset + '_' + args.local_model + '_nodenum' + str(args.node_num) + '_dir' + str(args.dirichlet_alpha) +'_E'+ str(args.E) + '_C' + str(args.select_ratio) \
+ '_' + args.server_method + '_' + args.client_method + '_seed' + str(args.random_seed)
root_path = './'
output_path = 'results/'
if not os.path.exists(os.path.join(root_path, output_path)):
os.makedirs(os.path.join(root_path, output_path))
os.environ['CUDA_VISIBLE_DEVICES'] = args.device
data = Data(args)
sample_size = []
for i in range(args.node_num):
sample_size.append(len(data.train_loader[i]))
size_weights = [i/sum(sample_size) for i in sample_size]
print('size-based weights',size_weights, flush=True)
central_node = Node(args, -1, train_loader = None, val_loader=data.val_loader, test_loader=data.test_loader)
# initialize the client nodes
client_nodes = {}
for i in range(args.node_num):
client_nodes[i] = Node(args, i, train_loader=data.train_loaders[i], val_loader=None, test_loader=None)
client_nodes[i].model.load_state_dict(copy.deepcopy(central_node.model.state_dict()))
if args.method == 'FedBM':
client_nodes[i].model.classifier_fedbm = copy.deepcopy(central_node.model.classifier_fedbm.data)
client_nodes[i].means = copy.deepcopy(central_node.means.data)
client_nodes[i].covs = copy.deepcopy(central_node.covs.data)
best_val_acc = 0
best_test_acc = 0
best_test_recall=0
best_test_prec=0
best_test_f1=0
best_test_auc=0
print(setting_name, flush=True)
g_driver = None
if args.method == 'FedBM':
g_driver = Generator_Driver(num_classes=args.num_classes, iterations=args.g_iter,
lr_g=args.lr_g,
text_features=central_node.all_text_features,
synthesis_batch_size=args.synthesis_batch_size,
means=central_node.means,
covs=central_node.covs,
args=args)
for rounds in range(0, args.T):
print('===============Stage 1 The {:d}-th round==============='.format(rounds + 1), flush=True)
lr_scheduler(rounds, client_nodes, args)
# Client selection
select_list = select_list_recorder[rounds]
# Local update
client_nodes, train_loss = Client_update(args, client_nodes, central_node, select_list, g_driver=g_driver)
print(args.server_method + args.client_method + ', train loss is {:.5f}'.format(train_loss), flush=True)
# Server aggregation
central_node = Server_update(args, central_node, client_nodes, select_list, size_weights)
val_acc, val_recall, val_prec, val_f1, val_auc = validate(args, central_node, which_dataset = 'validate')
print(args.server_method + args.client_method + ', Val acc: {:.3f}'.format(val_acc)+ ', recall: {:.3f}'.format(val_recall)+ ', prec: {:.3f}'.format(val_prec)+ ', f1: {:.3f}'.format(val_f1)+ ', auc: {:.3f}'.format(val_auc), flush=True)
print(args.server_method + args.client_method + ', Test acc: {:.3f}'.format(best_test_acc)+ ', recall: {:.3f}'.format(best_test_recall)+ ', prec: {:.3f}'.format(best_test_prec)+ ', f1: {:.3f}'.format(best_test_f1)+ ', auc: {:.3f}'.format(best_test_auc), flush=True)
print()
if val_acc+val_recall+val_prec+val_f1+val_auc>best_val_acc:
best_val_acc = val_acc+val_recall+val_prec+val_f1+val_auc
best_test_acc,best_test_recall, best_test_prec, best_test_f1,best_test_auc = validate(args, central_node, which_dataset = 'test')
print(args.server_method + args.client_method + ', Test acc: {:.3f}'.format(best_test_acc)+ ', recall: {:.3f}'.format(best_test_recall)+ ', prec: {:.3f}'.format(best_test_prec)+ ', f1: {:.3f}'.format(best_test_f1)+ ', auc: {:.3f}'.format(best_test_auc), flush=True)
print()
torch.save(central_node.model.state_dict(), os.path.join(root_path, output_path, setting_name+'_finalmodel.pth'))
if args.method == 'FedBM':
torch.save(central_node.model.classifier_fedbm, os.path.join(root_path, output_path, setting_name+'_classifier_fedbm.pth'))
torch.save(central_node.means, os.path.join(root_path, output_path, setting_name+'_means.pth'))
torch.save(central_node.covs, os.path.join(root_path, output_path, setting_name+'_covs.pth'))
#training generator
if args.method == 'FedBM' and (rounds+1)%args.freq_g_driver==0:
g_driver.train(central_node)
all_acc.append(best_test_acc)
all_recall.append(best_test_recall)
all_prec.append(best_test_prec)
all_f1.append(best_test_f1)
all_auc.append(best_test_auc)
end = time.strftime("%Y-%m-%d %H:%M:%S")
print('The ending time :{}'.format(end))
print('===========================================================')
print('Best test acc:', all_acc)
print('Best test acc mean: {:.5f}'.format(np.mean(all_acc)),'Best test acc std: {:.5f}'.format(np.std(all_acc)) )
print('Best test recall:', all_recall)
print('Best test recall mean: {:.5f}'.format(np.mean(all_recall)),'Best test recall std: {:.5f}'.format(np.std(all_recall)) )
print('Best test prec:', all_prec)
print('Best test prec mean: {:.5f}'.format(np.mean(all_prec)),'Best test prec std: {:.5f}'.format(np.std(all_prec)) )
print('Best test f1:', all_f1)
print('Best test f1 mean: {:.5f}'.format(np.mean(all_f1)),'Best test f1 std: {:.5f}'.format(np.std(all_f1)) )
print('Best test auc:', all_auc)
print('Best test auc mean: {:.5f}'.format(np.mean(all_auc)),'Best test auc std: {:.5f}'.format(np.std(all_auc)) )
print('===========================================================')