-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
150 lines (111 loc) · 4.75 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import torch
import cv2
from SAM.modeling.mask_decoder import DQDecoder
from SAM.modeling.prompt_encoder import PromptEncoder
from SAM.modeling.transformer import TwoWayTransformer
from SAM.modeling.common import LayerNorm2d
from SAM.modeling.image_encoder import DTEncoder
from functools import partial
from typing import List, Tuple, Type
class SPGen(nn.Module):
def __init__(self):
super(SPGen, self).__init__()
self.up1 = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2))
self.up3 = nn.Sequential(nn.ConvTranspose2d(256, 64, kernel_size=2, stride=2))
self.up4 = nn.Sequential(nn.ConvTranspose2d(256, 64, kernel_size=2, stride=2),
LayerNorm2d(64),
nn.GELU(),
nn.ConvTranspose2d(64, 16, kernel_size=2, stride=2))
self.final1 = nn.Conv2d(256, 1, kernel_size=1)
self.final2 = nn.Conv2d(256, 1, kernel_size=1)
self.final3 = nn.Conv2d(64, 1, kernel_size=1)
self.final4 = nn.Conv2d(16, 1, kernel_size=1)
def forward(self, x):
x1 = self.up1(x)
x3 = self.up3(x)
x4 = self.up4(x)
x1 = self.final1(x1)
x2 = self.final2(x)
x3 = self.final3(x3)
x4 = self.final4(x4)
return x1, x2, x3, x4
class UNSAM(nn.Module):
def __init__(self, domain_num):
super(UNSAM, self).__init__()
self.image_encoder = DTEncoder(
depth=12,
embed_dim=768,
img_size=1024,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=12,
patch_size=16,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=[2, 5, 8, 11],
window_size=14,
out_chans=256,
domain_num=domain_num
)
self.prompt_encoder = PromptEncoder(
embed_dim=256,
image_embedding_size=(64, 64), # 1024 // 16
input_image_size=(1024, 1024),
mask_in_chans=16,
)
self.mask_decoder = DQDecoder(
transformer=TwoWayTransformer(
depth=2,
embedding_dim=256,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=256,
class_num=domain_num + 1
)
self.spgen = SPGen()
self.up1 = nn.Upsample(scale_factor=8, mode='bilinear', align_corners=True)
self.up2 = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
self.up3 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.num_mask_tokens = domain_num + 1
self.mask_query = nn.Embedding(self.num_mask_tokens, 256)
def forward(self, x, domain_seq, img_id=None):
b = x.shape[0]
image_embeddings = self.image_encoder(x, domain_seq)
spgen1, spgen2, spgen3, spgen4 = self.spgen(image_embeddings)
spgen1 = self.up1(spgen1)
spgen2 = self.up2(spgen2)
spgen3 = self.up3(spgen3)
output_coarse = spgen4 + spgen3 + spgen2 + spgen1
output_prob = torch.sigmoid(output_coarse.detach())
output_prob[output_prob >= 0.95] = 1
output_prob[output_prob < 0.95] = 0
outputs_mask = []
for idx in range(b): # for each batch
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None,
boxes=None,
masks=output_prob[idx].unsqueeze(0),
)
image_embeddings_dec = image_embeddings[idx].unsqueeze(0)
image_pe = self.prompt_encoder.get_dense_pe()
# Mask
mask_tokens = self.mask_query.weight
mask_tokens = mask_tokens.unsqueeze(0).expand(sparse_embeddings.size(0), -1, -1)
tokens_mask = torch.cat((mask_tokens, sparse_embeddings), dim=1) # 1 x 5 x 256
# Expand per-image data in batch direction to be per-mask
mask_src = torch.repeat_interleave(image_embeddings_dec, tokens_mask.shape[0], dim=0)
mask_src = mask_src + dense_embeddings # 1 x 256 x 64 x 64
mask_pos_src = torch.repeat_interleave(image_pe, tokens_mask.shape[0], dim=0) # 1 x 256 x 64 x 64
low_res_masks = self.mask_decoder(
src=mask_src,
pos_src=mask_pos_src,
tokens=tokens_mask,
domain_seq=domain_seq
)
masks = F.interpolate(low_res_masks, (1024, 1024), mode="bilinear", align_corners=False)
outputs_mask.append(masks.squeeze(0))
return torch.stack(outputs_mask, dim=0), output_coarse