-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtest.py
92 lines (73 loc) · 3.01 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
import logging
from model.MEFL import MEFARG
from dataset import *
from utils import *
from conf import get_config,set_logger,set_outdir,set_env
def get_dataloader(conf):
print('==> Preparing data...')
if conf.dataset == 'BP4D':
valset = BP4D(conf.dataset_path, train=False, fold=conf.fold, transform=image_test(crop_size=conf.crop_size), stage = 2)
val_loader = DataLoader(valset, batch_size=conf.batch_size, shuffle=False, num_workers=conf.num_workers)
elif conf.dataset == 'DISFA':
valset = DISFA(conf.dataset_path, train=False, fold=conf.fold, transform=image_test(crop_size=conf.crop_size), stage = 2)
val_loader = DataLoader(valset, batch_size=conf.batch_size, shuffle=False, num_workers=conf.num_workers)
return val_loader, len(valset)
# Val
def val(net, val_loader):
net.eval()
statistics_list = None
for batch_idx, (inputs, targets) in enumerate(tqdm(val_loader)):
targets = targets.float()
with torch.no_grad():
if torch.cuda.is_available():
inputs, targets = inputs.cuda(), targets.cuda()
outputs, _ = net(inputs)
update_list = statistics(outputs, targets.detach(), 0.5)
statistics_list = update_statistics_list(statistics_list, update_list)
mean_f1_score, f1_score_list = calc_f1_score(statistics_list)
mean_acc, acc_list = calc_acc(statistics_list)
return mean_f1_score, f1_score_list, mean_acc, acc_list
def main(conf):
if conf.dataset == 'BP4D':
dataset_info = BP4D_infolist
elif conf.dataset == 'DISFA':
dataset_info = DISFA_infolist
# data
val_loader, val_data_num = get_dataloader(conf)
logging.info("Fold: [{} | {} val_data_num: {} ]".format(conf.fold, conf.N_fold, val_data_num))
net = MEFARG(num_classes=conf.num_classes, backbone=conf.arc)
# resume
if conf.resume != '':
logging.info("Resume form | {} ]".format(conf.resume))
net = load_state_dict(net, conf.resume)
if torch.cuda.is_available():
net = nn.DataParallel(net).cuda()
#test
val_mean_f1_score, val_f1_score, val_mean_acc, val_acc = val(net, val_loader)
# log
infostr = {'val_mean_f1_score {:.2f} val_mean_acc {:.2f}' .format(100.* val_mean_f1_score, 100.* val_mean_acc)}
logging.info(infostr)
infostr = {'F1-score-list:'}
logging.info(infostr)
infostr = dataset_info(val_f1_score)
logging.info(infostr)
infostr = {'Acc-list:'}
logging.info(infostr)
infostr = dataset_info(val_acc)
logging.info(infostr)
# ---------------------------------------------------------------------------------
if __name__=="__main__":
conf = get_config()
conf.evaluate = True
set_env(conf)
# generate outdir name
set_outdir(conf)
# Set the logger
set_logger(conf)
main(conf)