-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathLazyPairingHeapScript.sml
299 lines (263 loc) · 8.67 KB
/
LazyPairingHeapScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
(*
This is an example of applying the translator to the Lazy Pairing
Heap algorithm from Chris Okasaki's book.
*)
open preamble
open bagTheory bagLib okasaki_miscTheory ml_translatorLib ListProgTheory
val _ = new_theory "LazyPairingHeap"
val _ = translation_extends "ListProg";
(* Okasaki page 80 *)
(* Note, we're following Chargueraud and just cutting out the laziness since it
* shouldn't affect functional correctness *)
Datatype:
heap = Empty | Tree 'a heap heap
End
val fs = full_simp_tac (srw_ss ())
val rw = srw_tac []
val heap_size_def = fetch "-" "heap_size_def"
Definition heap_to_bag_def:
(heap_to_bag Empty = {||}) ∧
(heap_to_bag (Tree x h1 h2) =
BAG_INSERT x (BAG_UNION (heap_to_bag h1) (heap_to_bag h2)))
End
Definition is_heap_ordered_def:
(is_heap_ordered get_key leq Empty <=> T) ∧
(is_heap_ordered get_key leq (Tree x h1 h2) <=>
is_heap_ordered get_key leq h1 ∧
is_heap_ordered get_key leq h2 ∧
BAG_EVERY (\y. leq (get_key x) (get_key y)) (heap_to_bag h1) ∧
BAG_EVERY (\y. leq (get_key x) (get_key y)) (heap_to_bag h2))
End
Definition empty_def:
empty = Empty
End
val r = translate empty_def;
Definition is_empty:
(is_empty Empty = T) ∧
(is_empty _ = F)
End
val r = translate is_empty;
(*
Definition merge_def:
(merge get_key leq a Empty = a) ∧
(merge get_key leq Empty b = b) ∧
(merge get_key leq (Tree x h1 h2) (Tree y h1' h2') =
if leq (get_key x) (get_key y) then
link get_key leq (Tree x h1 h2) (Tree y h1' h2')
else
link get_key leq (Tree y h1' h2') (Tree x h1 h2)) ∧
(link get_key leq (Tree x Empty m) a = Tree x a m) ∧
(link get_key leq (Tree x b m) a =
Tree x Empty (merge get_key leq (merge get_key leq a b) m))
End
*)
(* Without mutual recursion, and with size constraints to handle the nested
* recursion *)
Definition merge_def:
(merge get_key leq a Empty = a) /\
(merge get_key leq Empty b = b) /\
(merge get_key leq (Tree x h1 h2) (Tree y h1' h2') =
if leq (get_key x) (get_key y) then
case h1 of
| Empty => Tree x (Tree y h1' h2') h2
| _ =>
(let h3 = merge get_key leq (Tree y h1' h2') h1 in
if heap_size (\x.0) h3 <
heap_size (\x.0) h1' + heap_size (\x.0) h2' +
heap_size (\x.0) h1 + 2 then
Tree x Empty (merge get_key leq h3 h2)
else
Empty)
else
case h1' of
| Empty => Tree y (Tree x h1 h2) h2'
| _ =>
(let h3 = merge get_key leq (Tree x h1 h2) h1' in
if heap_size (\x.0) h3 <
heap_size (\x.0) h1 + heap_size (\x.0) h2 +
heap_size (\x.0) h1' + 2 then
Tree y Empty (merge get_key leq h3 h2')
else
Empty))
End
Triviality merge_size:
!get_key leq h1 h2.
heap_size (\x.0) (merge get_key leq h1 h2) =
heap_size (\x.0) h1 + heap_size (\x.0) h2
Proof
recInduct (fetch "-" "merge_ind") >>
srw_tac [ARITH_ss] [merge_def, heap_size_def] >|
[cases_on `h1`, cases_on `h1'`] >>
full_simp_tac (srw_ss()++ARITH_ss) [] >>
srw_tac [ARITH_ss] [merge_def,heap_size_def] >>
Q.UNABBREV_TAC `h3` >>
full_simp_tac (srw_ss()++ARITH_ss) [heap_size_def] >>
cases_on `leq (get_key y) (get_key a)` >>
full_simp_tac (srw_ss()++ARITH_ss) [] >>
cases_on `leq (get_key x) (get_key a)` >>
full_simp_tac (srw_ss()++numSimps.ARITH_AC_ss) [heap_size_def, merge_def] >>
full_simp_tac (srw_ss()++ARITH_ss) []
QED
Triviality merge_size_lem:
(heap_size (\x.0) (merge get_key leq (Tree x h1 h2) h1') <
heap_size (\x.0) h1 + heap_size (\x.0) h2 + heap_size (\x.0) h1' + 2) = T
Proof
rw [merge_size, heap_size_def] >>
decide_tac
QED
(* Remove the size constraints *)
val merge_def = SIMP_RULE (srw_ss()) [merge_size_lem, LET_THM] merge_def;
Theorem merge_def[compute,allow_rebind] =
merge_def
val merge_ind =
SIMP_RULE (srw_ss()) [merge_size_lem, LET_THM] (fetch "-" "merge_ind");
Theorem merge_ind[allow_rebind] =
merge_ind
Triviality merge_thm:
merge get_key leq a b =
case (a,b) of
| (a,Empty) => a
| (Empty,b) => b
| (Tree x h1 h2, Tree y h1' h2') =>
if leq (get_key x) (get_key y) then
case h1 of
| Empty => Tree x (Tree y h1' h2') h2
| _ =>
Tree x Empty (merge get_key leq
(merge get_key leq (Tree y h1' h2') h1) h2)
else
case h1' of
| Empty => Tree y (Tree x h1 h2) h2'
| _ =>
Tree y Empty (merge get_key leq
(merge get_key leq (Tree x h1 h2) h1') h2')
Proof
Cases_on `a` THEN Cases_on `b` THEN SIMP_TAC (srw_ss()) [merge_def]
QED
val _ = translate merge_thm;
Definition insert_def:
insert get_key leq x a = merge get_key leq (Tree x Empty Empty) a
End
val r = translate insert_def;
Definition find_min_def:
find_min (Tree x _ _) = x
End
val r = translate find_min_def;
Definition delete_min_def:
delete_min get_key leq (Tree _ a b) = merge get_key leq a b
End
val r = translate delete_min_def;
(* Functional correctness *)
Theorem merge_bag:
!get_key leq h1 h2.
heap_to_bag (merge get_key leq h1 h2) =
BAG_UNION (heap_to_bag h1) (heap_to_bag h2)
Proof
HO_MATCH_MP_TAC merge_ind >>
srw_tac [BAG_ss] [merge_def, heap_to_bag_def, BAG_INSERT_UNION] >|
[cases_on `h1`,cases_on `h1'`] >>
fs [] >>
srw_tac [BAG_ss] [merge_def, heap_to_bag_def, BAG_INSERT_UNION]
QED
Theorem merge_heap_ordered:
!get_key leq h1 h2.
WeakLinearOrder leq ∧
is_heap_ordered get_key leq h1 ∧
is_heap_ordered get_key leq h2
⇒
is_heap_ordered get_key leq (merge get_key leq h1 h2)
Proof
HO_MATCH_MP_TAC merge_ind >>
rw [merge_def, is_heap_ordered_def, merge_bag] >|
[cases_on `h1`,cases_on `h1'`] >>
rw [is_heap_ordered_def, heap_to_bag_def, BAG_EVERY, merge_def] >>
fs [BAG_EVERY, is_heap_ordered_def, merge_bag, heap_to_bag_def] >|
[metis_tac [WeakLinearOrder, WeakOrder, transitive_def],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def],
cases_on `leq (get_key y) (get_key a)` >>
fs [],
cases_on `h1'` >>
fs [heap_to_bag_def, merge_bag] >>
metis_tac [WeakLinearOrder, WeakOrder, transitive_def],
cases_on `leq (get_key y) (get_key a)` >>
fs [],
cases_on `h` >>
fs [heap_to_bag_def, merge_bag] >>
metis_tac [WeakLinearOrder, WeakOrder, transitive_def],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def, WeakLinearOrder_neg],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def, WeakLinearOrder_neg],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def, WeakLinearOrder_neg],
cases_on `leq (get_key x) (get_key a)` >>
fs [],
cases_on `h1` >>
fs [heap_to_bag_def, merge_bag] >>
metis_tac [WeakLinearOrder, WeakOrder, transitive_def,
WeakLinearOrder_neg],
cases_on `leq (get_key x) (get_key a)` >>
fs [],
cases_on `h` >>
fs [heap_to_bag_def, merge_bag] >>
metis_tac [WeakLinearOrder, WeakOrder, transitive_def,
WeakLinearOrder_neg]]
QED
Theorem insert_bag:
!h get_key leq x.
heap_to_bag (insert get_key leq x h) = BAG_INSERT x (heap_to_bag h)
Proof
rw [insert_def, merge_bag, heap_to_bag_def,
BAG_INSERT_UNION]
QED
Theorem insert_heap_ordered:
!get_key leq x h.
WeakLinearOrder leq ∧ is_heap_ordered get_key leq h
⇒
is_heap_ordered get_key leq (insert get_key leq x h)
Proof
rw [insert_def] >>
`is_heap_ordered get_key leq (Tree x Empty Empty)`
by rw [is_heap_ordered_def, heap_to_bag_def] >>
metis_tac [merge_heap_ordered]
QED
Theorem find_min_correct:
!h get_key leq.
WeakLinearOrder leq ∧ (h ≠ Empty) ∧ is_heap_ordered get_key leq h
⇒
BAG_IN (find_min h) (heap_to_bag h) ∧
(!y. BAG_IN y (heap_to_bag h) ⇒ leq (get_key (find_min h)) (get_key y))
Proof
rw [] >>
cases_on `h` >>
fs [find_min_def, heap_to_bag_def, is_heap_ordered_def] >>
fs [BAG_EVERY] >>
metis_tac [WeakLinearOrder, WeakOrder, reflexive_def]
QED
Theorem delete_min_correct:
!h get_key leq.
WeakLinearOrder leq ∧ (h ≠ Empty) ∧ is_heap_ordered get_key leq h
⇒
is_heap_ordered get_key leq (delete_min get_key leq h) ∧
(heap_to_bag (delete_min get_key leq h) =
BAG_DIFF (heap_to_bag h) (EL_BAG (find_min h)))
Proof
rw [] >>
cases_on `h` >>
fs [delete_min_def, is_heap_ordered_def, merge_bag] >-
metis_tac [merge_heap_ordered] >>
rw [heap_to_bag_def, find_min_def, BAG_DIFF_INSERT2]
QED
(* Simplify the side conditions on the generated certificate theorems *)
val delete_min_side_def = fetch "-" "delete_min_side_def"
val find_min_side_def = fetch "-" "find_min_side_def"
Triviality delete_min_side:
!get_key leq h. delete_min_side get_key leq h = (h ≠ Empty)
Proof
cases_on `h` >>
rw [delete_min_side_def]
QED
Triviality find_min_side:
!h. find_min_side h = (h ≠ Empty)
Proof
cases_on `h` >>
rw [find_min_side_def]
QED
val _ = export_theory ();