-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathLeftistHeapScript.sml
206 lines (176 loc) · 5.28 KB
/
LeftistHeapScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
(*
This is an example of applying the translator to the Leftist
Heap algorithm from Chris Okasaki's book.
*)
open preamble
open bagTheory bagLib okasaki_miscTheory;
open ml_translatorLib ListProgTheory;
val fs = full_simp_tac (srw_ss ())
val rw = srw_tac []
val _ = new_theory "LeftistHeap"
val _ = translation_extends "ListProg";
(* Okasaki page 20 *)
Datatype:
heap = Empty | Tree num 'a heap heap
End
Definition heap_to_bag_def:
(heap_to_bag Empty = {||}) ∧
(heap_to_bag (Tree _ x h1 h2) =
BAG_INSERT x (BAG_UNION (heap_to_bag h1) (heap_to_bag h2)))
End
Definition rank_def:
(rank Empty = 0) ∧
(rank (Tree r _ _ _) = r)
End
val r = translate rank_def;
Definition is_heap_ordered_def:
(is_heap_ordered get_key leq Empty <=> T) ∧
(is_heap_ordered get_key leq (Tree _ x h1 h2) <=>
is_heap_ordered get_key leq h1 ∧
is_heap_ordered get_key leq h2 ∧
BAG_EVERY (\y. leq (get_key x) (get_key y)) (heap_to_bag h1) ∧
BAG_EVERY (\y. leq (get_key x) (get_key y)) (heap_to_bag h2) ∧
rank h1 ≥ rank h2)
End
Definition make_node_def:
make_node x a b =
if rank a >= rank b then
Tree (rank b + 1) x a b
else
Tree (rank a + 1) x b a
End
val r = translate make_node_def;
Definition empty_def:
empty = Empty
End
val r = translate empty_def;
Definition is_empty_def:
(is_empty Empty = T) ∧
(is_empty _ = F)
End
val r = translate is_empty_def;
Definition merge_def:
(merge get_key leq h Empty = h) ∧
(merge get_key leq Empty h = h) ∧
(merge get_key leq (Tree n1 x a1 b1) (Tree n2 y a2 b2) =
if leq (get_key x) (get_key y) then
make_node x a1 (merge get_key leq b1 (Tree n2 y a2 b2))
else
make_node y a2 (merge get_key leq (Tree n1 x a1 b1) b2))
End
val r = translate merge_def;
val merge_ind = fetch "-" "merge_ind"
Definition insert_def:
insert get_key leq x h = merge get_key leq (Tree 1 x Empty Empty) h
End
val r = translate insert_def;
Definition find_min_def:
find_min (Tree _ x _ _) = x
End
val r = translate find_min_def;
Definition delete_min_def:
delete_min get_key leq (Tree _ x a b) = merge get_key leq a b
End
val r = translate delete_min_def;
(* Functional correctness proof *)
Theorem merge_bag:
!get_key leq h1 h2.
heap_to_bag (merge get_key leq h1 h2) =
BAG_UNION (heap_to_bag h1) (heap_to_bag h2)
Proof
HO_MATCH_MP_TAC merge_ind >>
srw_tac [BAG_ss]
[merge_def, heap_to_bag_def, make_node_def, BAG_INSERT_UNION]
QED
Theorem merge_heap_ordered:
!get_key leq h1 h2.
WeakLinearOrder leq ∧
is_heap_ordered get_key leq h1 ∧
is_heap_ordered get_key leq h2
⇒
is_heap_ordered get_key leq (merge get_key leq h1 h2)
Proof
HO_MATCH_MP_TAC merge_ind >>
rw [merge_def, is_heap_ordered_def, make_node_def, merge_bag] >>
rw [heap_to_bag_def] >>
fs [BAG_EVERY] >|
[metis_tac [WeakLinearOrder, WeakOrder, transitive_def],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def],
decide_tac,
metis_tac [WeakLinearOrder, WeakOrder, transitive_def, WeakLinearOrder_neg],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def, WeakLinearOrder_neg],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def, WeakLinearOrder_neg],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def, WeakLinearOrder_neg],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def, WeakLinearOrder_neg],
metis_tac [WeakLinearOrder, WeakOrder, transitive_def, WeakLinearOrder_neg],
decide_tac]
QED
Theorem insert_bag:
!h get_key leq x.
heap_to_bag (insert get_key leq x h) = BAG_INSERT x (heap_to_bag h)
Proof
rw [insert_def, merge_bag, heap_to_bag_def,
BAG_INSERT_UNION]
QED
Theorem insert_heap_ordered:
!get_key leq x h.
WeakLinearOrder leq ∧ is_heap_ordered get_key leq h
⇒
is_heap_ordered get_key leq (insert get_key leq x h)
Proof
rw [insert_def] >>
`is_heap_ordered get_key leq (Tree 1 x Empty Empty)`
by rw [is_heap_ordered_def, heap_to_bag_def] >>
metis_tac [merge_heap_ordered]
QED
Theorem find_min_correct:
!h get_key leq.
WeakLinearOrder leq ∧ (h ≠ Empty) ∧ is_heap_ordered get_key leq h
⇒
BAG_IN (find_min h) (heap_to_bag h) ∧
(!y. BAG_IN y (heap_to_bag h) ⇒ leq (get_key (find_min h)) (get_key y))
Proof
rw [] >>
cases_on `h` >>
fs [find_min_def, heap_to_bag_def, is_heap_ordered_def] >>
fs [BAG_EVERY] >>
metis_tac [WeakLinearOrder, WeakOrder, reflexive_def]
QED
Theorem delete_min_correct:
!h get_key leq.
WeakLinearOrder leq ∧ (h ≠ Empty) ∧ is_heap_ordered get_key leq h
⇒
is_heap_ordered get_key leq (delete_min get_key leq h) ∧
(heap_to_bag (delete_min get_key leq h) =
BAG_DIFF (heap_to_bag h) (EL_BAG (find_min h)))
Proof
rw [] >>
cases_on `h` >>
fs [delete_min_def, is_heap_ordered_def, merge_bag] >-
metis_tac [merge_heap_ordered] >>
rw [heap_to_bag_def, find_min_def, BAG_DIFF_INSERT2]
QED
(* Simplify the side conditions on the generated certificate theorems *)
val delete_min_side_def = fetch "-" "delete_min_side_def"
val find_min_side_def = fetch "-" "find_min_side_def"
Triviality delete_min_side:
!get_key leq h. delete_min_side get_key leq h = (h ≠ Empty)
Proof
rw [delete_min_side_def] >>
eq_tac >>
rw [] >>
cases_on `h` >>
rw []
QED
Triviality find_min_side:
!h. find_min_side h = (h ≠ Empty)
Proof
rw [find_min_side_def] >>
eq_tac >>
rw [] >>
cases_on `h` >>
rw []
QED
val _ = export_theory ();