-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathRedBlackSetScript.sml
458 lines (404 loc) · 11.8 KB
/
RedBlackSetScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
(*
This is an example of applying the translator to the Red-Black
Set algorithm from Chris Okasaki's book.
*)
open preamble;
open okasaki_miscTheory pred_setTheory pred_setSimps;
open ml_translatorLib ListProgTheory
val _ = new_theory "RedBlackSet"
val _ = translation_extends "ListProg";
(* Okasaki page 28 *)
Datatype:
color = Red | Black
End
Datatype:
tree = Empty | Tree color tree 'a tree
End
val tree_distinct = fetch "-" "tree_distinct"
val tree_nchotomy = fetch "-" "tree_nchotomy"
Definition tree_to_set_def:
(tree_to_set Empty = {}) ∧
(tree_to_set (Tree _ t1 x t2) = {x} ∪ tree_to_set t1 ∪ tree_to_set t2)
End
(* The tree is a binary search tree *)
Definition is_bst_def:
(is_bst lt Empty <=> T) ∧
(is_bst lt (Tree _ t1 x t2) <=>
is_bst lt t1 ∧
is_bst lt t2 ∧
(!y. y ∈ tree_to_set t1 ⇒ lt y x) ∧
(!y. y ∈ tree_to_set t2 ⇒ lt x y))
End
Definition not_red_def:
(not_red (Tree Red t1 x t2) = F) ∧
(not_red _ = T)
End
Definition red_black_invariant1_def:
(red_black_invariant1 Empty <=> T) ∧
(red_black_invariant1 (Tree Black t1 x t2) <=>
red_black_invariant1 t1 ∧ red_black_invariant1 t2) ∧
(red_black_invariant1 (Tree Red t1 x t2) <=>
red_black_invariant1 t1 ∧ red_black_invariant1 t2 ∧
not_red t1 ∧ not_red t2)
End
(* Count the number of black nodes along every path to the root.
* Return NONE, if this number isn't the same along every path. *)
Definition red_black_invariant2_def:
(red_black_invariant2 Empty = SOME 0) ∧
(red_black_invariant2 (Tree c t1 x t2) =
case red_black_invariant2 t1 of
| NONE => NONE
| SOME n =>
case red_black_invariant2 t2 of
| NONE => NONE
| SOME n' =>
if n = n' then
if c = Black then
SOME (n + 1)
else
SOME n
else
NONE)
End
Definition empty_def:
empty = Empty
End
val r = translate empty_def;
Definition member_def:
(member lt x Empty = F) ∧
(member lt x (Tree _ a y b) =
if lt x y then
member lt x a
else if lt y x then
member lt x b
else
T)
End
val r = translate member_def;
Definition balance_def:
(balance Black (Tree Red (Tree Red a x b) y c) z d =
Tree Red (Tree Black a x b) y (Tree Black c z d)) ∧
(balance Black (Tree Red a x (Tree Red b y c)) z d =
Tree Red (Tree Black a x b) y (Tree Black c z d)) ∧
(balance Black a x (Tree Red (Tree Red b y c) z d) =
Tree Red (Tree Black a x b) y (Tree Black c z d)) ∧
(balance Black a x (Tree Red b y (Tree Red c z d)) =
Tree Red (Tree Black a x b) y (Tree Black c z d)) ∧
(balance col a x b = Tree col a x b)
End
val balance_ind = fetch "-" "balance_ind"
(* HOL expands the above balance into over 50 cases, so this alternate
* definition works better for the current translator. *)
Definition balance_left_left_def:
balance_left_left a z d =
case a of
| (Tree Red (Tree Red a x b) y c) =>
SOME (Tree Red (Tree Black a x b) y (Tree Black c z d))
| _ => NONE
End
val r = translate balance_left_left_def;
Definition balance_left_right_def:
balance_left_right a z d =
case a of
| (Tree Red a x (Tree Red b y c)) =>
SOME (Tree Red (Tree Black a x b) y (Tree Black c z d))
| _ => NONE
End
val r = translate balance_left_right_def;
Definition balance_right_left_def:
balance_right_left a x b =
case b of
| (Tree Red (Tree Red b y c) z d) =>
SOME (Tree Red (Tree Black a x b) y (Tree Black c z d))
| _ => NONE
End
val r = translate balance_right_left_def;
Definition balance_right_right_def:
balance_right_right a x b =
case b of
| (Tree Red b y (Tree Red c z d)) =>
SOME (Tree Red (Tree Black a x b) y (Tree Black c z d))
| _ => NONE
End
val r = translate balance_right_right_def;
Definition balance'_def:
balance' c a x b =
if c = Black then
case balance_left_left a x b of
| SOME t => t
| NONE =>
case balance_left_right a x b of
| SOME t => t
| NONE =>
case balance_right_left a x b of
| SOME t => t
| NONE =>
case balance_right_right a x b of
| SOME t => t
| NONE => Tree c a x b
else
Tree c a x b
End
val r = translate balance'_def;
Definition ins_def:
(ins lt x Empty = Tree Red Empty x Empty) ∧
(ins lt x (Tree col a y b) =
if lt x y then
balance' col (ins lt x a) y b
else if lt y x then
balance' col a y (ins lt x b)
else
Tree col a y b)
End
val r = translate ins_def;
Definition insert_def:
insert lt x s =
case ins lt x s of
| Tree _ a y b => Tree Black a y b
End
val r = translate insert_def;
(* Proof of functional correctness *)
Triviality balance'_correct:
!c a x b. balance' c a x b = balance c a x b
Proof
recInduct balance_ind >>
rw [balance'_def, balance_def, balance_left_left_def, balance_left_right_def,
balance_right_left_def, balance_right_right_def] >>
REPEAT (BasicProvers.FULL_CASE_TAC)
QED
Triviality balance'_tree:
!c t1 x t2. ∃c' t1' x' t2'. (balance' c t1 x t2 = Tree c' t1' x' t2')
Proof
recInduct balance_ind >>
rw [balance'_def, balance_left_left_def, balance_left_right_def,
balance_right_left_def, balance_right_right_def] >>
REPEAT BasicProvers.FULL_CASE_TAC
QED
Triviality balance'_set:
!c t1 x t2. tree_to_set (balance' c t1 x t2) = tree_to_set (Tree c t1 x t2)
Proof
recInduct balance_ind >>
srw_tac [PRED_SET_AC_ss]
[balance'_def, balance_left_left_def, balance_left_right_def,
balance_right_left_def, balance_right_right_def,
tree_to_set_def] >>
REPEAT BasicProvers.FULL_CASE_TAC >>
srw_tac [PRED_SET_AC_ss] [tree_to_set_def]
QED
Triviality balance'_bst:
!c t1 x t2.
transitive lt ∧ is_bst lt (Tree c t1 x t2)
⇒
is_bst lt (balance' c t1 x t2)
Proof
recInduct balance_ind >>
rw [transitive_def, balance'_def, balance_left_left_def,
balance_left_right_def, balance_right_left_def,
balance_right_right_def, is_bst_def, tree_to_set_def] >>
fs [transitive_def, balance'_def, balance_left_left_def,
balance_left_right_def, balance_right_left_def,
balance_right_right_def, is_bst_def, tree_to_set_def] >>
REPEAT BasicProvers.FULL_CASE_TAC >>
fs [transitive_def, balance'_def, balance_left_left_def,
balance_left_right_def, balance_right_left_def,
balance_right_right_def, is_bst_def, tree_to_set_def] >>
metis_tac []
QED
Triviality ins_tree:
!lt x t. ?c t1 y t2. (ins lt x t = Tree c t1 y t2)
Proof
cases_on `t` >>
rw [ins_def] >>
metis_tac [balance'_tree]
QED
Triviality ins_set:
∀lt x t.
StrongLinearOrder lt
⇒
(tree_to_set (ins lt x t) = {x} ∪ tree_to_set t)
Proof
induct_on `t` >>
rw [tree_to_set_def, ins_def, balance'_set] >>
fs [] >>
srw_tac [PRED_SET_AC_ss] [] >>
`x = a` by (fs [StrongLinearOrder, StrongOrder, irreflexive_def,
transitive_def, trichotomous] >>
metis_tac []) >>
rw []
QED
Triviality ins_bst:
!lt x t. StrongLinearOrder lt ∧ is_bst lt t ⇒ is_bst lt (ins lt x t)
Proof
induct_on `t` >>
rw [is_bst_def, ins_def, tree_to_set_def] >>
match_mp_tac balance'_bst >>
rw [is_bst_def] >>
imp_res_tac ins_set >>
fs [StrongLinearOrder, StrongOrder]
QED
Theorem insert_set:
∀lt x t.
StrongLinearOrder lt
⇒
(tree_to_set (insert lt x t) = {x} ∪ tree_to_set t)
Proof
rw [insert_def] >>
`?c t1 y t2. ins lt x t = Tree c t1 y t2` by metis_tac [ins_tree] >>
rw [tree_to_set_def] >>
`tree_to_set (ins lt x t) = tree_to_set (Tree c t1 y t2)`
by metis_tac [] >>
fs [] >>
imp_res_tac ins_set >>
fs [tree_to_set_def]
QED
Theorem insert_bst:
!lt x t.
StrongLinearOrder lt ∧ is_bst lt t
⇒
is_bst lt (insert lt x t)
Proof
rw [insert_def] >>
`?c t1 y t2. ins lt x t = Tree c t1 y t2` by metis_tac [ins_tree] >>
rw [] >>
`is_bst lt (Tree c t1 y t2)` by metis_tac [ins_bst] >>
fs [is_bst_def]
QED
Theorem member_correct:
!lt t x.
StrongLinearOrder lt ∧
is_bst lt t
⇒
(member lt x t <=> x ∈ tree_to_set t)
Proof
strip_tac >> induct_on `t` >>
rw [member_def, is_bst_def, tree_to_set_def] >>
fs [StrongLinearOrder, StrongOrder, irreflexive_def, transitive_def,
trichotomous] >>
metis_tac []
QED
(* Prove the two red-black invariants that no red node has a red child,
* and that the number of black nodes is the same on each path from
* the root to the leaves. *)
Triviality case_opt_lem:
!x f z.
((case x of NONE => NONE | SOME y => f y) = SOME z) =
(?y. (x = SOME y) ∧ (f y = SOME z))
Proof
cases_on `x` >>
rw []
QED
Triviality balance_inv2_black:
!c t1 a t2 n.
(red_black_invariant2 t1 = SOME n) ∧
(red_black_invariant2 t2 = SOME n) ∧
(c = Black)
⇒
(red_black_invariant2 (balance c t1 a t2) = SOME (n+1))
Proof
recInduct balance_ind >>
rw [balance_def, red_black_invariant2_def, case_opt_lem] >>
metis_tac []
QED
Triviality ins_inv2:
!leq x t n.
(red_black_invariant2 t = SOME n)
⇒
(red_black_invariant2 (ins leq x t) = SOME n)
Proof
induct_on `t` >>
rw [red_black_invariant2_def, ins_def, case_opt_lem] >>
every_case_tac >>
cases_on `c` >>
fs [] >>
rw [] >|
[metis_tac [balance_inv2_black, balance'_correct],
rw [balance'_def, red_black_invariant2_def, case_opt_lem],
metis_tac [balance_inv2_black, balance'_correct],
rw [balance'_def, red_black_invariant2_def, case_opt_lem]]
QED
Theorem insert_invariant2:
!leq x t n.
(red_black_invariant2 t = SOME n)
⇒
(red_black_invariant2 (insert leq x t) = SOME n) ∨
(red_black_invariant2 (insert leq x t) = SOME (n + 1))
Proof
rw [insert_def] >>
cases_on `ins leq x t` >>
rw [] >-
metis_tac [ins_tree, tree_distinct] >>
`red_black_invariant2 (ins leq x t) = SOME n` by metis_tac [ins_inv2] >>
POP_ASSUM MP_TAC >>
rw [red_black_invariant2_def, case_opt_lem] >>
cases_on `n = n''` >>
cases_on `c` >>
fs []
QED
(* Invariant one hold everywhere except for the root node,
* where it may or may not. *)
Definition rbinv1_root_def:
(rbinv1_root Empty <=> T) ∧
(rbinv1_root (Tree c t1 x t2) <=>
red_black_invariant1 t1 ∧ red_black_invariant1 t2)
End
Triviality balance_inv1_black:
!c t1 a t2 n.
red_black_invariant1 t1 ∧ rbinv1_root t2 ∧ (c = Black)
⇒
red_black_invariant1 (balance c t1 a t2) ∧
red_black_invariant1 (balance c t2 a t1)
Proof
recInduct balance_ind >>
rw [balance_def, red_black_invariant1_def, rbinv1_root_def, not_red_def]
QED
Triviality inv1_lemma:
!t. red_black_invariant1 t ⇒ rbinv1_root t
Proof
cases_on `t` >>
rw [red_black_invariant1_def, rbinv1_root_def] >>
cases_on `c` >>
fs [red_black_invariant1_def]
QED
Triviality ins_inv1:
!leq x t.
red_black_invariant1 t
⇒
(not_red t ⇒ red_black_invariant1 (ins leq x t)) ∧
(¬not_red t ⇒ rbinv1_root (ins leq x t))
Proof
induct_on `t` >>
rw [red_black_invariant1_def, rbinv1_root_def, ins_def, not_red_def] >>
cases_on `c` >>
fs [red_black_invariant1_def, not_red_def] >|
[metis_tac [balance_inv1_black, balance'_correct, inv1_lemma],
rw [balance'_def, rbinv1_root_def],
metis_tac [balance_inv1_black, balance'_correct, inv1_lemma],
rw [balance'_def, rbinv1_root_def]]
QED
Theorem insert_invariant1:
!leq x t. red_black_invariant1 t ⇒ red_black_invariant1 (insert leq x t)
Proof
rw [insert_def] >>
cases_on `ins leq x t` >>
rw [] >-
metis_tac [ins_tree, tree_distinct] >>
`not_red t ⇒ red_black_invariant1 (ins leq x t)` by metis_tac [ins_inv1] >>
`¬not_red t ⇒ rbinv1_root (ins leq x t)` by metis_tac [ins_inv1] >>
POP_ASSUM MP_TAC >>
POP_ASSUM MP_TAC >>
cases_on `not_red t` >>
rw [] >>
cases_on `c` >>
fs [red_black_invariant1_def, rbinv1_root_def]
QED
(* Simplify the side conditions on the generated certificate theorems,
* based on the verification. *)
val insert_side_def = fetch "-" "insert_side_def"
Triviality insert_side:
∀leq x t. insert_side leq x t
Proof
rw [insert_side_def] >>
`?c t1 y t2. ins leq x t = Tree c t1 y t2` by metis_tac [ins_tree] >>
rw []
QED
val _ = export_theory ();