forked from ai-dawang/PlugNPlay-Modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
(CVPR 2023)路由注意力机制.py
582 lines (487 loc) · 25.5 KB
/
(CVPR 2023)路由注意力机制.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
from typing import Tuple, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor, LongTensor
# Github地址:https://github.com/rayleizhu/BiFormer
# 论文地址:https://arxiv.org/pdf/2303.08810
class TopkRouting(nn.Module):
"""
differentiable topk routing with scaling
Args:
qk_dim: int, feature dimension of query and key
topk: int, the 'topk'
qk_scale: int or None, temperature (multiply) of softmax activation
with_param: bool, wether inorporate learnable params in routing unit
diff_routing: bool, wether make routing differentiable
soft_routing: bool, wether make output value multiplied by routing weights
"""
def __init__(self, qk_dim, topk=4, qk_scale=None, param_routing=False, diff_routing=False):
super().__init__()
self.topk = topk
self.qk_dim = qk_dim
self.scale = qk_scale or qk_dim ** -0.5
self.diff_routing = diff_routing
# TODO: norm layer before/after linear?
self.emb = nn.Linear(qk_dim, qk_dim) if param_routing else nn.Identity()
# routing activation
self.routing_act = nn.Softmax(dim=-1)
def forward(self, query: Tensor, key: Tensor) -> Tuple[Tensor]:
"""
Args:
q, k: (n, p^2, c) tensor
Return:
r_weight, topk_index: (n, p^2, topk) tensor
"""
if not self.diff_routing:
query, key = query.detach(), key.detach()
query_hat, key_hat = self.emb(query), self.emb(key) # per-window pooling -> (n, p^2, c)
attn_logit = (query_hat * self.scale) @ key_hat.transpose(-2, -1) # (n, p^2, p^2)
topk_attn_logit, topk_index = torch.topk(attn_logit, k=self.topk, dim=-1) # (n, p^2, k), (n, p^2, k)
r_weight = self.routing_act(topk_attn_logit) # (n, p^2, k)
return r_weight, topk_index
class KVGather(nn.Module):
def __init__(self, mul_weight='none'):
super().__init__()
assert mul_weight in ['none', 'soft', 'hard']
self.mul_weight = mul_weight
def forward(self, r_idx: Tensor, r_weight: Tensor, kv: Tensor):
"""
r_idx: (n, p^2, topk) tensor
r_weight: (n, p^2, topk) tensor
kv: (n, p^2, w^2, c_kq+c_v)
Return:
(n, p^2, topk, w^2, c_kq+c_v) tensor
"""
# select kv according to routing index
n, p2, w2, c_kv = kv.size()
topk = r_idx.size(-1)
# print(r_idx.size(), r_weight.size())
# FIXME: gather consumes much memory (topk times redundancy), write cuda kernel?
topk_kv = torch.gather(kv.view(n, 1, p2, w2, c_kv).expand(-1, p2, -1, -1, -1),
# (n, p^2, p^2, w^2, c_kv) without mem cpy
dim=2,
index=r_idx.view(n, p2, topk, 1, 1).expand(-1, -1, -1, w2, c_kv)
# (n, p^2, k, w^2, c_kv)
)
if self.mul_weight == 'soft':
topk_kv = r_weight.view(n, p2, topk, 1, 1) * topk_kv # (n, p^2, k, w^2, c_kv)
elif self.mul_weight == 'hard':
raise NotImplementedError('differentiable hard routing TBA')
# else: #'none'
# topk_kv = topk_kv # do nothing
return topk_kv
class QKVLinear(nn.Module):
def __init__(self, dim, qk_dim, bias=True):
super().__init__()
self.dim = dim
self.qk_dim = qk_dim
self.qkv = nn.Linear(dim, qk_dim + qk_dim + dim, bias=bias)
def forward(self, x):
q, kv = self.qkv(x).split([self.qk_dim, self.qk_dim + self.dim], dim=-1)
return q, kv
# q, k, v = self.qkv(x).split([self.qk_dim, self.qk_dim, self.dim], dim=-1)
# return q, k, v
class BiLevelRoutingAttention(nn.Module):
"""
n_win: number of windows in one side (so the actual number of windows is n_win*n_win)
kv_per_win: for kv_downsample_mode='ada_xxxpool' only, number of key/values per window. Similar to n_win, the actual number is kv_per_win*kv_per_win.
topk: topk for window filtering
param_attention: 'qkvo'-linear for q,k,v and o, 'none': param free attention
param_routing: extra linear for routing
diff_routing: wether to set routing differentiable
soft_routing: wether to multiply soft routing weights
"""
def __init__(self, dim, n_win=7, num_heads=8, qk_dim=None, qk_scale=None,
kv_per_win=4, kv_downsample_ratio=4, kv_downsample_kernel=None, kv_downsample_mode='identity',
topk=4, param_attention="qkvo", param_routing=False, diff_routing=False, soft_routing=False,
side_dwconv=3,
auto_pad=True):
super().__init__()
# local attention setting
self.dim = dim
self.n_win = n_win # Wh, Ww
self.num_heads = num_heads
self.qk_dim = qk_dim or dim
assert self.qk_dim % num_heads == 0 and self.dim % num_heads == 0, 'qk_dim and dim must be divisible by num_heads!'
self.scale = qk_scale or self.qk_dim ** -0.5
################side_dwconv (i.e. LCE in ShuntedTransformer)###########
self.lepe = nn.Conv2d(dim, dim, kernel_size=side_dwconv, stride=1, padding=side_dwconv // 2,
groups=dim) if side_dwconv > 0 else \
lambda x: torch.zeros_like(x)
################ global routing setting #################
self.topk = topk
self.param_routing = param_routing
self.diff_routing = diff_routing
self.soft_routing = soft_routing
# router
assert not (self.param_routing and not self.diff_routing) # cannot be with_param=True and diff_routing=False
self.router = TopkRouting(qk_dim=self.qk_dim,
qk_scale=self.scale,
topk=self.topk,
diff_routing=self.diff_routing,
param_routing=self.param_routing)
if self.soft_routing: # soft routing, always diffrentiable (if no detach)
mul_weight = 'soft'
elif self.diff_routing: # hard differentiable routing
mul_weight = 'hard'
else: # hard non-differentiable routing
mul_weight = 'none'
self.kv_gather = KVGather(mul_weight=mul_weight)
# qkv mapping (shared by both global routing and local attention)
self.param_attention = param_attention
if self.param_attention == 'qkvo':
self.qkv = QKVLinear(self.dim, self.qk_dim)
self.wo = nn.Linear(dim, dim)
elif self.param_attention == 'qkv':
self.qkv = QKVLinear(self.dim, self.qk_dim)
self.wo = nn.Identity()
else:
raise ValueError(f'param_attention mode {self.param_attention} is not surpported!')
self.kv_downsample_mode = kv_downsample_mode
self.kv_per_win = kv_per_win
self.kv_downsample_ratio = kv_downsample_ratio
self.kv_downsample_kenel = kv_downsample_kernel
if self.kv_downsample_mode == 'ada_avgpool':
assert self.kv_per_win is not None
self.kv_down = nn.AdaptiveAvgPool2d(self.kv_per_win)
elif self.kv_downsample_mode == 'ada_maxpool':
assert self.kv_per_win is not None
self.kv_down = nn.AdaptiveMaxPool2d(self.kv_per_win)
elif self.kv_downsample_mode == 'maxpool':
assert self.kv_downsample_ratio is not None
self.kv_down = nn.MaxPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()
elif self.kv_downsample_mode == 'avgpool':
assert self.kv_downsample_ratio is not None
self.kv_down = nn.AvgPool2d(self.kv_downsample_ratio) if self.kv_downsample_ratio > 1 else nn.Identity()
elif self.kv_downsample_mode == 'identity': # no kv downsampling
self.kv_down = nn.Identity()
elif self.kv_downsample_mode == 'fracpool':
# assert self.kv_downsample_ratio is not None
# assert self.kv_downsample_kenel is not None
# TODO: fracpool
# 1. kernel size should be input size dependent
# 2. there is a random factor, need to avoid independent sampling for k and v
raise NotImplementedError('fracpool policy is not implemented yet!')
elif kv_downsample_mode == 'conv':
# TODO: need to consider the case where k != v so that need two downsample modules
raise NotImplementedError('conv policy is not implemented yet!')
else:
raise ValueError(f'kv_down_sample_mode {self.kv_downsaple_mode} is not surpported!')
# softmax for local attention
self.attn_act = nn.Softmax(dim=-1)
self.auto_pad = auto_pad
def forward(self, x, ret_attn_mask=False):
"""
x: NHWC tensor
Return:
NHWC tensor
"""
x = rearrange(x, "n c h w -> n h w c")
# NOTE: use padding for semantic segmentation
###################################################
if self.auto_pad:
N, H_in, W_in, C = x.size()
pad_l = pad_t = 0
pad_r = (self.n_win - W_in % self.n_win) % self.n_win
pad_b = (self.n_win - H_in % self.n_win) % self.n_win
x = F.pad(x, (0, 0, # dim=-1
pad_l, pad_r, # dim=-2
pad_t, pad_b)) # dim=-3
_, H, W, _ = x.size() # padded size
else:
N, H, W, C = x.size()
assert H % self.n_win == 0 and W % self.n_win == 0 #
###################################################
# patchify, (n, p^2, w, w, c), keep 2d window as we need 2d pooling to reduce kv size
x = rearrange(x, "n (j h) (i w) c -> n (j i) h w c", j=self.n_win, i=self.n_win)
#################qkv projection###################
# q: (n, p^2, w, w, c_qk)
# kv: (n, p^2, w, w, c_qk+c_v)
# NOTE: separte kv if there were memory leak issue caused by gather
q, kv = self.qkv(x)
# pixel-wise qkv
# q_pix: (n, p^2, w^2, c_qk)
# kv_pix: (n, p^2, h_kv*w_kv, c_qk+c_v)
q_pix = rearrange(q, 'n p2 h w c -> n p2 (h w) c')
kv_pix = self.kv_down(rearrange(kv, 'n p2 h w c -> (n p2) c h w'))
kv_pix = rearrange(kv_pix, '(n j i) c h w -> n (j i) (h w) c', j=self.n_win, i=self.n_win)
q_win, k_win = q.mean([2, 3]), kv[..., 0:self.qk_dim].mean(
[2, 3]) # window-wise qk, (n, p^2, c_qk), (n, p^2, c_qk)
##################side_dwconv(lepe)##################
# NOTE: call contiguous to avoid gradient warning when using ddp
lepe = self.lepe(rearrange(kv[..., self.qk_dim:], 'n (j i) h w c -> n c (j h) (i w)', j=self.n_win,
i=self.n_win).contiguous())
lepe = rearrange(lepe, 'n c (j h) (i w) -> n (j h) (i w) c', j=self.n_win, i=self.n_win)
############ gather q dependent k/v #################
r_weight, r_idx = self.router(q_win, k_win) # both are (n, p^2, topk) tensors
kv_pix_sel = self.kv_gather(r_idx=r_idx, r_weight=r_weight, kv=kv_pix) # (n, p^2, topk, h_kv*w_kv, c_qk+c_v)
k_pix_sel, v_pix_sel = kv_pix_sel.split([self.qk_dim, self.dim], dim=-1)
# kv_pix_sel: (n, p^2, topk, h_kv*w_kv, c_qk)
# v_pix_sel: (n, p^2, topk, h_kv*w_kv, c_v)
######### do attention as normal ####################
k_pix_sel = rearrange(k_pix_sel, 'n p2 k w2 (m c) -> (n p2) m c (k w2)',
m=self.num_heads) # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_kq//m) transpose here?
v_pix_sel = rearrange(v_pix_sel, 'n p2 k w2 (m c) -> (n p2) m (k w2) c',
m=self.num_heads) # flatten to BMLC, (n*p^2, m, topk*h_kv*w_kv, c_v//m)
q_pix = rearrange(q_pix, 'n p2 w2 (m c) -> (n p2) m w2 c',
m=self.num_heads) # to BMLC tensor (n*p^2, m, w^2, c_qk//m)
# param-free multihead attention
attn_weight = (
q_pix * self.scale) @ k_pix_sel # (n*p^2, m, w^2, c) @ (n*p^2, m, c, topk*h_kv*w_kv) -> (n*p^2, m, w^2, topk*h_kv*w_kv)
attn_weight = self.attn_act(attn_weight)
out = attn_weight @ v_pix_sel # (n*p^2, m, w^2, topk*h_kv*w_kv) @ (n*p^2, m, topk*h_kv*w_kv, c) -> (n*p^2, m, w^2, c)
out = rearrange(out, '(n j i) m (h w) c -> n (j h) (i w) (m c)', j=self.n_win, i=self.n_win,
h=H // self.n_win, w=W // self.n_win)
out = out + lepe
# output linear
out = self.wo(out)
# NOTE: use padding for semantic segmentation
# crop padded region
if self.auto_pad and (pad_r > 0 or pad_b > 0):
out = out[:, :H_in, :W_in, :].contiguous()
if ret_attn_mask:
return out, r_weight, r_idx, attn_weight
else:
return rearrange(out, "n h w c -> n c h w")
class Attention(nn.Module):
"""
vanilla attention
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
"""
args:
x: NCHW tensor
return:
NCHW tensor
"""
_, _, H, W = x.size()
x = rearrange(x, 'n c h w -> n (h w) c')
#######################################
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
#######################################
x = rearrange(x, 'n (h w) c -> n c h w', h=H, w=W)
return x
class AttentionLePE(nn.Module):
"""
vanilla attention
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., side_dwconv=5):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.lepe = nn.Conv2d(dim, dim, kernel_size=side_dwconv, stride=1, padding=side_dwconv // 2,
groups=dim) if side_dwconv > 0 else \
lambda x: torch.zeros_like(x)
def forward(self, x):
"""
args:
x: NCHW tensor
return:
NCHW tensor
"""
_, _, H, W = x.size()
x = rearrange(x, 'n c h w -> n (h w) c')
#######################################
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
lepe = self.lepe(rearrange(x, 'n (h w) c -> n c h w', h=H, w=W))
lepe = rearrange(lepe, 'n c h w -> n (h w) c')
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = x + lepe
x = self.proj(x)
x = self.proj_drop(x)
#######################################
x = rearrange(x, 'n (h w) c -> n c h w', h=H, w=W)
return x
def _grid2seq(x: Tensor, region_size: Tuple[int], num_heads: int):
"""
Args:
x: BCHW tensor
region size: int
num_heads: number of attention heads
Return:
out: rearranged x, has a shape of (bs, nhead, nregion, reg_size, head_dim)
region_h, region_w: number of regions per col/row
"""
B, C, H, W = x.size()
region_h, region_w = H // region_size[0], W // region_size[1]
x = x.view(B, num_heads, C // num_heads, region_h, region_size[0], region_w, region_size[1])
x = torch.einsum('bmdhpwq->bmhwpqd', x).flatten(2, 3).flatten(-3, -2) # (bs, nhead, nregion, reg_size, head_dim)
return x, region_h, region_w
def _seq2grid(x: Tensor, region_h: int, region_w: int, region_size: Tuple[int]):
"""
Args:
x: (bs, nhead, nregion, reg_size^2, head_dim)
Return:
x: (bs, C, H, W)
"""
bs, nhead, nregion, reg_size_square, head_dim = x.size()
x = x.view(bs, nhead, region_h, region_w, region_size[0], region_size[1], head_dim)
x = torch.einsum('bmhwpqd->bmdhpwq', x).reshape(bs, nhead * head_dim,
region_h * region_size[0], region_w * region_size[1])
return x
def regional_routing_attention_torch(
query: Tensor, key: Tensor, value: Tensor, scale: float,
region_graph: LongTensor, region_size: Tuple[int],
kv_region_size: Optional[Tuple[int]] = None,
auto_pad=True) -> Tensor:
"""
Args:
query, key, value: (B, C, H, W) tensor
scale: the scale/temperature for dot product attention
region_graph: (B, nhead, h_q*w_q, topk) tensor, topk <= h_k*w_k
region_size: region/window size for queries, (rh, rw)
key_region_size: optional, if None, key_region_size=region_size
auto_pad: required to be true if the input sizes are not divisible by the region_size
Return:
output: (B, C, H, W) tensor
attn: (bs, nhead, q_nregion, reg_size, topk*kv_region_size) attention matrix
"""
kv_region_size = kv_region_size or region_size
bs, nhead, q_nregion, topk = region_graph.size()
# Auto pad to deal with any input size
q_pad_b, q_pad_r, kv_pad_b, kv_pad_r = 0, 0, 0, 0
if auto_pad:
_, _, Hq, Wq = query.size()
q_pad_b = (region_size[0] - Hq % region_size[0]) % region_size[0]
q_pad_r = (region_size[1] - Wq % region_size[1]) % region_size[1]
if (q_pad_b > 0 or q_pad_r > 0):
query = F.pad(query, (0, q_pad_r, 0, q_pad_b)) # zero padding
_, _, Hk, Wk = key.size()
kv_pad_b = (kv_region_size[0] - Hk % kv_region_size[0]) % kv_region_size[0]
kv_pad_r = (kv_region_size[1] - Wk % kv_region_size[1]) % kv_region_size[1]
if (kv_pad_r > 0 or kv_pad_b > 0):
key = F.pad(key, (0, kv_pad_r, 0, kv_pad_b)) # zero padding
value = F.pad(value, (0, kv_pad_r, 0, kv_pad_b)) # zero padding
# to sequence format, i.e. (bs, nhead, nregion, reg_size, head_dim)
query, q_region_h, q_region_w = _grid2seq(query, region_size=region_size, num_heads=nhead)
key, _, _ = _grid2seq(key, region_size=kv_region_size, num_heads=nhead)
value, _, _ = _grid2seq(value, region_size=kv_region_size, num_heads=nhead)
# gather key and values.
# TODO: is seperate gathering slower than fused one (our old version) ?
# torch.gather does not support broadcasting, hence we do it manually
bs, nhead, kv_nregion, kv_region_size, head_dim = key.size()
broadcasted_region_graph = region_graph.view(bs, nhead, q_nregion, topk, 1, 1). \
expand(-1, -1, -1, -1, kv_region_size, head_dim)
key_g = torch.gather(key.view(bs, nhead, 1, kv_nregion, kv_region_size, head_dim). \
expand(-1, -1, query.size(2), -1, -1, -1), dim=3,
index=broadcasted_region_graph) # (bs, nhead, q_nregion, topk, kv_region_size, head_dim)
value_g = torch.gather(value.view(bs, nhead, 1, kv_nregion, kv_region_size, head_dim). \
expand(-1, -1, query.size(2), -1, -1, -1), dim=3,
index=broadcasted_region_graph) # (bs, nhead, q_nregion, topk, kv_region_size, head_dim)
# token-to-token attention
# (bs, nhead, q_nregion, reg_size, head_dim) @ (bs, nhead, q_nregion, head_dim, topk*kv_region_size)
# -> (bs, nhead, q_nregion, reg_size, topk*kv_region_size)
# TODO: mask padding region
attn = (query * scale) @ key_g.flatten(-3, -2).transpose(-1, -2)
attn = torch.softmax(attn, dim=-1)
# (bs, nhead, q_nregion, reg_size, topk*kv_region_size) @ (bs, nhead, q_nregion, topk*kv_region_size, head_dim)
# -> (bs, nhead, q_nregion, reg_size, head_dim)
output = attn @ value_g.flatten(-3, -2)
# to BCHW format
output = _seq2grid(output, region_h=q_region_h, region_w=q_region_w, region_size=region_size)
# remove paddings if needed
if auto_pad and (q_pad_b > 0 or q_pad_r > 0):
output = output[:, :, :Hq, :Wq]
return output, attn
class BiLevelRoutingAttention_nchw(nn.Module):
"""Bi-Level Routing Attention that takes nchw input
Compared to legacy version, this implementation:
* removes unused args and components
* uses nchw input format to avoid frequent permutation
When the size of inputs is not divisible by the region size, there is also a numerical difference
than legacy implementation, due to:
* different way to pad the input feature map (padding after linear projection)
* different pooling behavior (count_include_pad=False)
Current implementation is more reasonable, hence we do not keep backward numerical compatiability
"""
def __init__(self, dim, num_heads=8, n_win=7, qk_scale=None, topk=4, side_dwconv=3, auto_pad=False,
attn_backend='torch'):
super().__init__()
# local attention setting
self.dim = dim
self.num_heads = num_heads
assert self.dim % num_heads == 0, 'dim must be divisible by num_heads!'
self.head_dim = self.dim // self.num_heads
self.scale = qk_scale or self.dim ** -0.5 # NOTE: to be consistent with old models.
################side_dwconv (i.e. LCE in Shunted Transformer)###########
self.lepe = nn.Conv2d(dim, dim, kernel_size=side_dwconv, stride=1, padding=side_dwconv // 2,
groups=dim) if side_dwconv > 0 else \
lambda x: torch.zeros_like(x)
################ regional routing setting #################
self.topk = topk
self.n_win = n_win # number of windows per row/col
##########################################
self.qkv_linear = nn.Conv2d(self.dim, 3 * self.dim, kernel_size=1)
self.output_linear = nn.Conv2d(self.dim, self.dim, kernel_size=1)
if attn_backend == 'torch':
self.attn_fn = regional_routing_attention_torch
else:
raise ValueError('CUDA implementation is not available yet. Please stay tuned.')
def forward(self, x: Tensor, ret_attn_mask=False):
"""
Args:
x: NCHW tensor, better to be channel_last (https://pytorch.org/tutorials/intermediate/memory_format_tutorial.html)
Return:
NCHW tensor
"""
N, C, H, W = x.size()
region_size = (H // self.n_win, W // self.n_win)
# STEP 1: linear projection
qkv = self.qkv_linear.forward(x) # ncHW
q, k, v = qkv.chunk(3, dim=1) # ncHW
# STEP 2: region-to-region routing
# NOTE: ceil_mode=True, count_include_pad=False = auto padding
# NOTE: gradients backward through token-to-token attention. See Appendix A for the intuition.
q_r = F.avg_pool2d(q.detach(), kernel_size=region_size, ceil_mode=True, count_include_pad=False)
k_r = F.avg_pool2d(k.detach(), kernel_size=region_size, ceil_mode=True, count_include_pad=False) # nchw
q_r: Tensor = q_r.permute(0, 2, 3, 1).flatten(1, 2) # n(hw)c
k_r: Tensor = k_r.flatten(2, 3) # nc(hw)
a_r = q_r @ k_r # n(hw)(hw), adj matrix of regional graph
_, idx_r = torch.topk(a_r, k=self.topk, dim=-1) # n(hw)k long tensor
idx_r: LongTensor = idx_r.unsqueeze_(1).expand(-1, self.num_heads, -1, -1)
# STEP 3: token to token attention (non-parametric function)
output, attn_mat = self.attn_fn(query=q, key=k, value=v, scale=self.scale,
region_graph=idx_r, region_size=region_size
)
output = output + self.lepe(v) # ncHW
output = self.output_linear(output) # ncHW
if ret_attn_mask:
return output, attn_mat
return output
# 输入 N C HW, 输出 N C H W
if __name__ == '__main__':
block = BiLevelRoutingAttention_nchw(64).cuda()
input = torch.rand(1, 64, 64, 64).cuda() # 输入 B C H W
output = block(input)
print(input.size(), output.size())