forked from Michael-Calce/GeeksForGeeks-Problem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path29 November Count the Number of Full Binary Trees
137 lines (36 loc) · 1.19 KB
/
29 November Count the Number of Full Binary Trees
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
class Solution{
public:
long long int numoffbt(long long int arr[], int n){
const long long int MOD = 1000000007;
long long int mn = INT_MAX, mx = INT_MIN;
for(int i = 0; i < n; i++){
mn = (mn > arr[i]) ? arr[i] : mn;
mx = (mx < arr[i]) ? arr[i] : mx;
}
long long int ans = 0;
int pd;
vector<bool> vis(mx+1, false);
vector<long long int> sol(mx+1, 0);
for(int i = 0; i < n; i++){
vis[arr[i]] = 1;
sol[arr[i]] = 1;
}
for(int i = mn; i <= mx; i++){
if(!vis[i]){
continue;
}
for(int j = 2; i*j <= mx && j <= i; j++){
pd = i*j;
if(!vis[pd]){
continue;
}
sol[pd] = (sol[pd] + (sol[i]*sol[j])%MOD)%MOD;
if(i != j){
sol[pd] = ( sol[pd] + (sol[i]*sol[j])%MOD)%MOD;
}
}
ans = (ans + sol[i])%MOD;
}
return ans;
}
};