-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathrun_ppo.py
95 lines (76 loc) · 2.65 KB
/
run_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from PPO import PPO
from common.utils import agg_double_list
import sys
import gym
import numpy as np
import matplotlib.pyplot as plt
MAX_EPISODES = 5000
EPISODES_BEFORE_TRAIN = 0
EVAL_EPISODES = 10
EVAL_INTERVAL = 100
# roll out n steps
ROLL_OUT_N_STEPS = 10
# only remember the latest ROLL_OUT_N_STEPS
MEMORY_CAPACITY = ROLL_OUT_N_STEPS
# only use the latest ROLL_OUT_N_STEPS for training PPO
BATCH_SIZE = ROLL_OUT_N_STEPS
TARGET_UPDATE_STEPS = 5
TARGET_TAU = 1.0
REWARD_DISCOUNTED_GAMMA = 0.99
ENTROPY_REG = 0.00
#
DONE_PENALTY = -10.
CRITIC_LOSS = "mse"
MAX_GRAD_NORM = None
EPSILON_START = 0.99
EPSILON_END = 0.05
EPSILON_DECAY = 500
RANDOM_SEED = 2017
def run(env_id="CartPole-v0"):
env = gym.make(env_id)
env.seed(RANDOM_SEED)
env_eval = gym.make(env_id)
env_eval.seed(RANDOM_SEED)
state_dim = env.observation_space.shape[0]
if len(env.action_space.shape) > 1:
action_dim = env.action_space.shape[0]
else:
action_dim = env.action_space.n
ppo = PPO(env=env, memory_capacity=MEMORY_CAPACITY,
state_dim=state_dim, action_dim=action_dim,
batch_size=BATCH_SIZE, entropy_reg=ENTROPY_REG,
done_penalty=DONE_PENALTY, roll_out_n_steps=ROLL_OUT_N_STEPS,
target_update_steps=TARGET_UPDATE_STEPS, target_tau=TARGET_TAU,
reward_gamma=REWARD_DISCOUNTED_GAMMA,
epsilon_start=EPSILON_START, epsilon_end=EPSILON_END,
epsilon_decay=EPSILON_DECAY, max_grad_norm=MAX_GRAD_NORM,
episodes_before_train=EPISODES_BEFORE_TRAIN,
critic_loss=CRITIC_LOSS)
episodes =[]
eval_rewards =[]
while ppo.n_episodes < MAX_EPISODES:
ppo.interact()
if ppo.n_episodes >= EPISODES_BEFORE_TRAIN:
ppo.train()
if ppo.episode_done and ((ppo.n_episodes+1)%EVAL_INTERVAL == 0):
rewards, _ = ppo.evaluation(env_eval, EVAL_EPISODES)
rewards_mu, rewards_std = agg_double_list(rewards)
print("Episode %d, Average Reward %.2f" % (ppo.n_episodes+1, rewards_mu))
episodes.append(ppo.n_episodes+1)
eval_rewards.append(rewards_mu)
episodes = np.array(episodes)
eval_rewards = np.array(eval_rewards)
np.savetxt("./output/%s_ppo_episodes.txt"%env_id, episodes)
np.savetxt("./output/%s_ppo_eval_rewards.txt"%env_id, eval_rewards)
plt.figure()
plt.plot(episodes, eval_rewards)
plt.title("%s" % env_id)
plt.xlabel("Episode")
plt.ylabel("Average Reward")
plt.legend(["PPO"])
plt.savefig("./output/%s_ppo.png"%env_id)
if __name__ == "__main__":
if len(sys.argv) >= 2:
run(sys.argv[1])
else:
run()