-
Notifications
You must be signed in to change notification settings - Fork 108
/
jeep_posche_local_latent_blend.yaml
58 lines (42 loc) · 1.54 KB
/
jeep_posche_local_latent_blend.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# CUDA_VISIBLE_DEVICES=5 python test_fatezero.py --config config/teaser/jeep_posche_local_latent_blend.yaml
pretrained_model_path: "./ckpt/jeep_tuned_200"
dataset_config:
path: "data/teaser_car-turn"
prompt: "a silver jeep driving down a curvy road in the countryside,"
n_sample_frame: 8
sampling_rate: 1
stride: 80
offset:
left: 0
right: 0
top: 0
bottom: 0
editing_config:
use_invertion_latents: true
use_inversion_attention: true
annotate: False
editing_prompts: [
# a silver jeep driving down a curvy road in the countryside,
a Porsche car driving down a curvy road in the countryside,
]
p2p_config:
0:
cross_replace_steps:
default_: 0.5
self_replace_steps: 0.5
use_inversion_attention: True
is_replace_controller: True
blend_words: [['silver', 'jeep'], ["Porsche", 'car']] # for local edit. If it is not local yet - use only the source object: blend_word = ((('cat',), ("cat",))).
blend_self_attention: True
blend_latents: True
blend_th: [0.3, 0.3]
clip_length: "${..dataset_config.n_sample_frame}"
sample_seeds: [0]
num_inference_steps: 50
prompt2prompt_edit: True
model_config:
lora: 160
test_pipeline_config:
target: video_diffusion.pipelines.p2p_ddim_spatial_temporal.P2pDDIMSpatioTemporalPipeline
num_inference_steps: "${..validation_sample_logger.num_inference_steps}"
seed: 0