-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflow_around_cylinder.cpp
481 lines (405 loc) · 15.3 KB
/
flow_around_cylinder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
// if [ -x "$(command -v qsub)" ]; then ./q run.sh; else ./run.sh; fi
#define _USE_MATH_DEFINES
#include <cmath>
#include <ctime>
#include <cstdio>
#include <vector>
#include <cstring>
#include <fstream>
#include <stdlib.h>
#include <iostream>
#include "Eigen/Dense"
#include <CL/sycl.hpp>
using namespace std;
using Eigen::MatrixXd;
typedef sycl::buffer<double, 2> mat_buf;
const auto AC_READ = sycl::access::mode::read;
const auto AC_WRITE = sycl::access::mode::write;
const int M = 100;
const int N = 100;
const double d = 1.0;
const double d1 = 2;
const double d2 = 40;
const int DIV = 1000;
const int SEC = 100;
const int EPOCH = DIV * SEC;
const double Re = 200;
const double dt = 1.0 / DIV;
const double err = 0.005;
const double u0 = 1;
const auto siz = sycl::range<2>(M + 1, N + 1);
MatrixXd X (M + 1, N + 1);
MatrixXd Y (M + 1, N + 1);
MatrixXd J (M + 1, N + 1);
MatrixXd X_eta (M + 1, N + 1);
MatrixXd X_xi (M + 1, N + 1);
MatrixXd Y_eta (M + 1, N + 1);
MatrixXd Y_xi (M + 1, N + 1);
MatrixXd X_etaeta (M + 1, N + 1);
MatrixXd X_xixi (M + 1, N + 1);
MatrixXd X_xieta (M + 1, N + 1);
MatrixXd Y_etaeta (M + 1, N + 1);
MatrixXd Y_xixi (M + 1, N + 1);
MatrixXd Y_xieta (M + 1, N + 1);
MatrixXd Eta_x (M + 1, N + 1);
MatrixXd Xi_x (M + 1, N + 1);
MatrixXd Eta_y (M + 1, N + 1);
MatrixXd Xi_y (M + 1, N + 1);
MatrixXd Eta_xx (M + 1, N + 1);
MatrixXd Xi_xx (M + 1, N + 1);
MatrixXd Eta_xy (M + 1, N + 1);
MatrixXd Eta_yy (M + 1, N + 1);
MatrixXd Xi_yy (M + 1, N + 1);
MatrixXd Xi_xy (M + 1, N + 1);
MatrixXd U (M + 1, N + 1);
MatrixXd V (M + 1, N + 1);
MatrixXd W (M + 1, N + 1);
MatrixXd PSI (M + 1, N + 1);
sycl::queue calc_queue;
void Jacobi() {
int index = 0;
X_xi = MatrixXd::Zero(M + 1, N + 1);
Y_xi = MatrixXd::Zero(M + 1, N + 1);
X_eta = MatrixXd::Zero(M + 1, N + 1);
Y_eta = MatrixXd::Zero(M + 1, N + 1);
X_xixi = MatrixXd::Zero(M + 1, N + 1);
X_etaeta = MatrixXd::Zero(M + 1, N + 1);
Y_xixi = MatrixXd::Zero(M + 1, N + 1);
Y_etaeta = MatrixXd::Zero(M + 1, N + 1);
J = MatrixXd::Zero(M + 1, N + 1);
for (int i = 0; i < M; i++) {
index = i > 0 ? i - 1 : M - 1;
for (int j = 1; j < N; j++) {
X_xi(i, j) = (X(i + 1, j) - X(index, j)) / 2.0 / d;
Y_xi(i, j) = (Y(i + 1, j) - Y(index, j)) / 2.0 / d;
X_eta(i, j) = (X(i, j + 1) - X(i, j - 1)) / 2.0 / d;
Y_eta(i, j) = (Y(i, j + 1) - Y(i, j - 1)) / 2.0 / d;
X_xixi(i, j) = (X(i + 1, j) - 2 * X(i, j) + X(index, j)) / d / d;
Y_xixi(i, j) = (Y(i + 1, j) - 2 * Y(i, j) + Y(index, j)) / d / d;
X_etaeta(i, j) = (X(i, j + 1) - 2 * X(i, j) + X(i, j - 1)) / d / d;
Y_etaeta(i, j) = (Y(i, j + 1) - 2 * Y(i, j) + Y(i, j - 1)) / d / d;
X_xieta(i, j) = (X(i + 1, j + 1) - X(i + 1, j - 1) - X(index, j + 1) + X(index, j - 1)) / 4.0 / d / d;
Y_xieta(i, j) = (Y(i + 1, j + 1) - Y(i + 1, j - 1) - Y(index, j + 1) + Y(index, j - 1)) / 4.0 / d / d;
}
}
for (int i = 0; i < M; i++) {
int j = N; index = i ? i - 1 : M - 1;
X_xi(i, j) = (X(i + 1, j) - X(index, j)) / 2.0 / d;
Y_xi(i, j) = (Y(i + 1, j) - Y(index, j)) / 2.0 / d;
X_eta(i, j) = (X(i, j) - X(i, j - 1)) / d;
Y_eta(i, j) = (Y(i, j) - Y(i, j - 1)) / d;
X_xixi(i, j) = (X(i + 1, j) - 2 * X(i, j) + X(index, j)) / d / d;
Y_xixi(i, j) = (Y(i + 1, j) - 2 * Y(i, j) + Y(index, j)) / d / d;
X_etaeta(i, j) = X_etaeta(i, j - 1);
Y_etaeta(i, j) = Y_etaeta(i, j - 1);
X_xieta(i, j) = (X(i + 1, j) - X(i + 1, j - 1) - X(index, j) + X(index, j - 1)) / 2.0 / d / d;
Y_xieta(i, j) = (Y(i + 1, j) - Y(i + 1, j - 1) - Y(index, j) + Y(index, j - 1)) / 2.0 / d / d;
}
for (int i = 0; i < M; i++) {
int j = 0; index = i ? i - 1 : M - 1;
X_xi(i, j) = (X(i + 1, j) - X(index, j)) / 2.0 / d;
Y_xi(i, j) = (Y(i + 1, j) - Y(index, j)) / 2.0 / d;
X_eta(i, j) = (X(i, j + 1) - X(i, j)) / d;
Y_eta(i, j) = (Y(i, j + 1) - Y(i, j)) / d;
X_xixi(i, j) = (X(i + 1, j) - 2 * X(i, j) + X(index, j)) / d / d;
Y_xixi(i, j) = (Y(i + 1, j) - 2 * Y(i, j) + Y(index, j)) / d / d;
X_etaeta(i, j) = X_etaeta(i, j + 1);
Y_etaeta(i, j) = Y_etaeta(i, j + 1);
X_xieta(i, j) = (X(i + 1, j + 1) - X(i + 1, j) - X(index, j + 1) + X(index, j)) / 2.0 / d / d;
Y_xieta(i, j) = (Y(i + 1, j + 1) - Y(i + 1, j) - Y(index, j + 1) + Y(index, j)) / 2.0 / d / d;
}
for (int i = 0; i < M; i++)
for (int j = 0; j <= N; j++)
J(i, j) = X_xi(i, j) * Y_eta(i, j) - X_eta(i, j) * Y_xi(i, j);
}
void deriviate() {
Eigen::Vector3d A, B, C, D;
Eigen::Matrix3d E;
double temp;
Xi_x = MatrixXd::Zero(M + 1, N + 1);
Eta_x = MatrixXd::Zero(M + 1, N + 1);
Xi_y = MatrixXd::Zero(M + 1, N + 1);
Eta_y = MatrixXd::Zero(M + 1, N + 1);
Xi_xx = MatrixXd::Zero(M + 1, N + 1);
Xi_xy = MatrixXd::Zero(M + 1, N + 1);
Xi_yy = MatrixXd::Zero(M + 1, N + 1);
Eta_xx = MatrixXd::Zero(M + 1, N + 1);
Eta_xy = MatrixXd::Zero(M + 1, N + 1);
Eta_yy = MatrixXd::Zero(M + 1, N + 1);
for (int i = 0; i < M; i++) {
for (int j = 0; j <= N; j++) {
Xi_x (i, j) = Y_eta(i, j) / J(i, j);
Eta_x(i, j) = -Y_xi (i, j) / J(i, j);
Xi_y (i, j) = -X_eta(i, j) / J(i, j);
Eta_y(i, j) = X_xi (i, j) / J(i, j);
A << Xi_x (i, j) * X_xixi (i, j) + Xi_y (i, j) * Y_xixi (i, j),
Xi_x (i, j) * X_xieta (i, j) + Xi_y (i, j) * Y_xieta (i, j),
Xi_x (i, j) * X_etaeta(i, j) + Xi_y (i, j) * Y_etaeta(i, j);
C << Eta_x(i, j) * X_xixi (i, j) + Eta_y(i, j) * Y_xixi (i, j),
Eta_x(i, j) * X_xieta (i, j) + Eta_y(i, j) * Y_xieta (i, j),
Eta_x(i, j) * X_etaeta(i, j) + Eta_y(i, j) * Y_etaeta(i, j);
E << pow(Y_eta(i, j), 2), -2 * Y_eta(i, j) * Y_xi (i, j),
pow(Y_xi (i, j), 2), -X_eta(i, j) * Y_eta(i, j),
(X_xi(i, j) * Y_eta(i, j) + X_eta(i, j) * Y_xi(i, j)),
-X_xi(i, j) * Y_xi(i, j), pow(X_eta(i, j), 2),
-2 * X_xi(i, j) * X_eta(i, j), pow(X_xi(i, j), 2);
temp = pow(X_xi(i, j) * Y_eta(i, j) - X_eta(i, j) * Y_xi(i, j), 2);
B = -E * A / temp;
D = -E * C / temp;
Xi_xx(i, j) = B(0);
Xi_xy(i, j) = B(1);
Xi_yy(i, j) = B(2);
Eta_xx(i, j) = D(0);
Eta_xy(i, j) = D(1);
Eta_yy(i, j) = D(2);
}
}
}
MatrixXd ZERO = MatrixXd::Zero(M + 1, N + 1);
MatrixXd pre_A(M + 1, N + 1);
MatrixXd pre_B(M + 1, N + 1);
MatrixXd pre_R(M + 1, N + 1);
MatrixXd pre_O(M + 1, N + 1);
MatrixXd pre_E(M + 1, N + 1);
mat_buf buf_pre_A (ZERO.data(), siz);
mat_buf buf_pre_B (ZERO.data(), siz);
mat_buf buf_pre_R (ZERO.data(), siz);
mat_buf buf_pre_O (ZERO.data(), siz);
mat_buf buf_pre_E (ZERO.data(), siz);
mat_buf buf_Xi_x (ZERO.data(), siz);
mat_buf buf_Xi_y (ZERO.data(), siz);
mat_buf buf_Eta_x (ZERO.data(), siz);
mat_buf buf_Eta_y (ZERO.data(), siz);
mat_buf buf_X_xi (ZERO.data(), siz);
mat_buf buf_X_eta (ZERO.data(), siz);
mat_buf buf_Y_xi (ZERO.data(), siz);
mat_buf buf_Y_eta (ZERO.data(), siz);
void pre_process() {
pre_A = MatrixXd::Zero(M + 1, N + 1);
pre_B = MatrixXd::Zero(M + 1, N + 1);
pre_R = MatrixXd::Zero(M + 1, N + 1);
pre_O = MatrixXd::Zero(M + 1, N + 1);
pre_E = MatrixXd::Zero(M + 1, N + 1);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
pre_A(i, j) = pow(Xi_x(i, j), 2) + pow(Xi_y(i, j), 2);
pre_B(i, j) = Xi_x(i, j) * Eta_x(i, j) + Xi_y(i, j) * Eta_y(i, j);
pre_R(i, j) = pow(Eta_x(i, j), 2) + pow(Eta_y(i, j), 2);
pre_O(i, j) = Xi_xx(i, j) + Xi_yy(i, j);
pre_E(i, j) = Eta_xx(i, j) + Eta_yy(i, j);
}
}
buf_pre_A = mat_buf(pre_A.data(), siz);
buf_pre_B = mat_buf(pre_B.data(), siz);
buf_pre_R = mat_buf(pre_R.data(), siz);
buf_pre_O = mat_buf(pre_O.data(), siz);
buf_pre_E = mat_buf(pre_E.data(), siz);
buf_Xi_x = mat_buf(Xi_x.data() , siz);
buf_Xi_y = mat_buf(Xi_y.data() , siz);
buf_Eta_x = mat_buf(Eta_x.data(), siz);
buf_Eta_y = mat_buf(Eta_y.data(), siz);
buf_X_xi = mat_buf(X_xi.data() , siz);
buf_Y_xi = mat_buf(Y_xi.data() , siz);
buf_X_eta = mat_buf(X_eta.data(), siz);
buf_Y_eta = mat_buf(Y_eta.data(), siz);
}
void push() {
MatrixXd W_new(M + 1, N + 1);
W_new = MatrixXd::Zero(M + 1, N + 1);
mat_buf buf_U(U.data(), siz);
mat_buf buf_V(V.data(), siz);
mat_buf buf_W(W.data(), siz);
mat_buf buf_new_W(W_new.data(), siz);
auto tas = calc_queue.submit([&](sycl::handler& h) {
auto pA = buf_pre_A.get_access<AC_READ>(h);
auto pB = buf_pre_B.get_access<AC_READ>(h);
auto pR = buf_pre_R.get_access<AC_READ>(h);
auto pO = buf_pre_O.get_access<AC_READ>(h);
auto pE = buf_pre_E.get_access<AC_READ>(h);
auto pXi_x = buf_Xi_x.get_access <AC_READ>(h);
auto pXi_y = buf_Xi_y.get_access <AC_READ>(h);
auto pEta_x = buf_Eta_x.get_access<AC_READ>(h);
auto pEta_y = buf_Eta_y.get_access<AC_READ>(h);
auto pU = buf_U.get_access <AC_READ>(h);
auto pV = buf_V.get_access <AC_READ>(h);
auto pW = buf_W.get_access <AC_READ>(h);
auto pNew_W = buf_new_W.get_access<AC_WRITE>(h);
h.parallel_for(sycl::range<2>(N, M), [=](sycl::id<2> idx) {
int i = idx[0];
int j = idx[1], index = j ? j - 1 : M - 1;
if (i != 0) {
double a = pA[i][j], b = pB[i][j], r = pR[i][j], o = pO[i][j], e = pE[i][j];
double b_e = (a + o / 2.0) / Re, b_w = (a - o / 2.0) / Re,
b_s = (r + e / 2.0) / Re, b_n = (r - e / 2.0) / Re;
double b_w1 = (pU[i][j] * pXi_x [i][j] + pV[i][j] * pXi_y [i][j]) / 2.0,
b_n1 = (pU[i][j] * pEta_x[i][j] + pV[i][j] * pEta_y[i][j]) / 2.0,
b_e1 = -b_w1,
b_s1 = -b_n1;
pNew_W[i][j] = pW[i][j] +
dt * (pW[i][j + 1] * (b_e + b_e1) + pW[i][index] * (b_w + b_w1) +
pW[i + 1][j] * (b_s + b_s1) + pW[i - 1][j] * (b_n + b_n1) -
2.0 / Re * (a + r) * pW[i][j] +
2.0 * b / Re * (pW[i + 1][j + 1] - pW[i + 1][j - 1] - pW[i + 1][index] + pW[i - 1][index]));
}
});
});
for (int j = 0; j < N; j++) W_new(M, j) = W_new(0, j);
tas.wait();
W = W_new;
}
void psi_iteration() {
int cnt = 0;
MatrixXd psi_new(M + 1, N + 1);
psi_new = PSI;
mat_buf buf_W(W.data(), siz);
while (1) {
mat_buf buf_PSI(PSI.data(), siz);
mat_buf buf_new_PSI(psi_new.data(), siz);
auto tas = calc_queue.submit([&](sycl::handler& h) {
auto pA = buf_pre_A.get_access <AC_READ>(h);
auto pB = buf_pre_B.get_access <AC_READ>(h);
auto pR = buf_pre_R.get_access <AC_READ>(h);
auto pO = buf_pre_O.get_access <AC_READ>(h);
auto pE = buf_pre_E.get_access <AC_READ>(h);
auto pW = buf_W.get_access <AC_READ>(h);
auto pPSI = buf_PSI.get_access <AC_READ>(h);
auto pNew_PSI = buf_new_PSI.get_access<AC_WRITE>(h);
h.parallel_for(sycl::range<2>(N, M), [=](sycl::id<2> idx) {
int i = idx[0];
int j = idx[1], index = j ? j - 1 : M - 1;
if (i != 0) {
double a = pA[i][j], b = pB[i][j], r = pR[i][j], o = pO[i][j],
e = pE[i][j];
pNew_PSI[i][j] =
((a - o / 2.0) * pPSI[i][index] + (a + o / 2.0) * pPSI[i][j + 1] +
(r - e / 2.0) * pPSI[i - 1][j] + (r + e / 2.0) * pPSI[i + 1][j] +
2 * b *
(pPSI[i + 1][j + 1] - pPSI[i - 1][j + 1] -
pPSI[i + 1][index] + pPSI[i - 1][index]) -
pW[i][j]) /
(2 * a + 2 * r);
}
});
});
tas.wait();
for (int j = 1; j < N; j++) psi_new(M, j) = psi_new(0, j);
double error = (PSI.block(0, 1, M + 1, N - 1) - psi_new.block(0, 1, M + 1, N - 1)).norm();
PSI = psi_new;
if (error < err) {
return;
}
}
}
void velocity() {
int index = 0;
mat_buf buf_J (J.data(), siz);
mat_buf buf_PSI (PSI.data(), siz);
mat_buf buf_U (U.data(), siz);
mat_buf buf_V (V.data(), siz);
auto tas = calc_queue.submit([&](sycl::handler& h) {
auto pJ = buf_J.get_access <AC_READ>(h);
auto pPSI = buf_PSI.get_access <AC_READ>(h);
auto pX_xi = buf_X_xi.get_access <AC_READ>(h);
auto pY_xi = buf_Y_xi.get_access <AC_READ>(h);
auto pX_eta = buf_X_eta.get_access<AC_READ>(h);
auto pY_eta = buf_Y_eta.get_access<AC_READ>(h);
auto pU = buf_U.get_access <AC_WRITE>(h);
auto pV = buf_V.get_access <AC_WRITE>(h);
h.parallel_for(sycl::range<2>(N, M), [=](sycl::id<2> idx) {
int i = idx[0];
int j = idx[1], index = j ? j - 1 : M - 1;
if (i != 0) {
pU[i][j] = pX_xi[i][j] / pJ[i][j] * (pPSI[i + 1][j] - pPSI[i - 1][j]) / 2.0 / d
- pX_eta[i][j] / pJ[i][j] * (pPSI[i][j + 1] - pPSI[i][index]) / 2.0 / d;
pV[i][j] = pY_xi[i][j] / pJ[i][j] * (pPSI[i + 1][j] - pPSI[i - 1][j]) / 2.0 / d
- pY_eta[i][j] / pJ[i][j] * (pPSI[i][j + 1] - pPSI[i][index]) / 2.0 / d;
}
});
});
tas.wait();
U.row(M) = U.row(0);
V.row(M) = V.row(0);
}
void clear() {
double sum = 0;
for (int i = 0; i < M; i++) sum += PSI(i, 1);
double ave = sum / M;
for (int i = 0; i < M; i++) PSI(i, 0) = ave;
for (int i = 0; i < M; i++)
W(i, 0) = 2 * PSI(i, 1) * (pow(Eta_x(i, 0), 2) + pow(Eta_y(i, 0), 2));
}
void init() {
U = u0 * MatrixXd::Ones(M + 1, N + 1);
U.row(M) = MatrixXd::Zero(1, N + 1);
U.col(0) = MatrixXd::Zero(M + 1, 1);
V = MatrixXd::Zero(M + 1, N + 1);
PSI = MatrixXd::Zero(M + 1, N + 1);
W = MatrixXd::Zero(M + 1, N + 1);
for (int i = 0; i < M; i++)
for (int j = 1; j <= N; j++) PSI(i, j) = 0;
clear();
}
void boundary() {
int j = N;
for (int i = 0; i < M; i++) {
V(i, j) = 0;
W(i, j) = 0;
U(i, j) = u0;
PSI(i, j) = u0 * Y(i, j);
}
clear();
}
void save(int k) {
if (k % DIV) return;
char filename[30];
sprintf(filename, "./output/PSI%d.dat", k / DIV); ofstream psiout (filename); psiout << PSI; psiout.close();
sprintf(filename, "./output/U%d.dat", k / DIV); ofstream Uout (filename); Uout << U; Uout.close();
sprintf(filename, "./output/V%d.dat", k / DIV); ofstream Vout (filename); Vout << V; Vout.close();
}
void readPortfolio(MatrixXd& matrix, string b) {
ifstream data(b);
string lineOfData;
if (data.is_open()) {
int i = 0;
while (data.good()) {
char linebuff[4096];
getline(data, lineOfData);
strncpy(linebuff, lineOfData.c_str(), sizeof(linebuff) - 1);
{
int j = 0;
double val;
char* p_val;
p_val = strtok(linebuff, " ,;");
while (NULL != p_val) {
val = atof(p_val);
matrix(i, j) = val;
j++;
p_val = strtok(NULL, " ,;");
}
}
i++;
}
} else std::cout << "Unable to open file";
}
int main() {
clock_t start, end;
readPortfolio(X, "X.txt");
readPortfolio(Y, "Y.txt");
start = clock();
Jacobi();
deriviate();
init();
pre_process();
PSI.row(M) = PSI.row(0);
for (int k = 1; k <= EPOCH; k++) {
push();
psi_iteration();
velocity();
boundary();
save(k);
}
end = clock();
std::cout << "time = " << double(end - start) / CLOCKS_PER_SEC << "s"
<< std::endl;
return 0;
}