forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EngineTask.py
893 lines (814 loc) · 37 KB
/
EngineTask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
from __future__ import print_function
import collections
from math import ceil
import sys
import threading
import time
import numpy
import theano
from Device import Device
from EngineUtil import assign_dev_data
from Log import log
from TaskSystem import ProcConnectionDied
from Util import hms, progress_bar, terminal_size, hdf5_strings, interrupt_main, NumbersDict
class TaskThread(threading.Thread):
def __init__(self, task, network, devices, data, batches, eval_batch_size=0, start_batch=0, share_batches = False, reduction_rate=1.0, report_prefix=None, exclude=None, epoch=None):
"""
:type task: str
:type network: Network.LayerNetwork
:type devices: list[Device.Device]
:type data: Dataset.Dataset
:type batches: EngineBatch.BatchSetGenerator
:type start_batch: int
:param str report_prefix: such as epoch or so. only for reporting
"""
threading.Thread.__init__(self, name="TaskThread %s" % task)
assert len(devices) > 0
if eval_batch_size == 0:
eval_batch_size = sys.maxsize
self.share_batches = share_batches
self.eval_batch_size = eval_batch_size
self.eval_batch_idx = 0
self.start_batch = start_batch
self.reduction_rate = reduction_rate
self.devices = devices
self.network = network
self.batches = batches
self.exclude = exclude
self.task = task
self.data = data
self.daemon = True
self.elapsed = 0
self.finalized = False
self.score = {}
self.error = {}
self.results = {}
self.num_frames = NumbersDict(0)
self.batch_idx = None; " :type: int | None "
self.device_crash_batch = None; " :type: int | None "
self.report_prefix = report_prefix or self.task
self.epoch = epoch
self.lock = threading.Lock()
self.start()
def assign_dev_data(self, device, batches):
return assign_dev_data(device, self.data, batches)
def maybe_wait_for_batches(self, device, batches):
"""
:type device: Device
:type batches: list[Batch]
"""
pass
def allocate_devices(self, selected_devices = None):
"""
Sets the device data, i.e. the next batches, via self.batches.
This calls Dataset.load_seqs() to get the data.
This sets:
device.targets
device.ctc_targets
device.tags
device.index
:rtype: list[list[EngineBatch.Batch]]
:returns list of batches per device
"""
if not selected_devices:
selected_devices = self.devices
devices_batches = []; " :type: list[list[EngineBatch.Batch]] "
if self.share_batches:
batches = self.batches.peek_next_n(1)
for device in selected_devices:
if not self.share_batches:
batches = self.batches.peek_next_n(device.num_batches)
self.maybe_wait_for_batches(device=device, batches=batches)
success, batch_adv_idx = self.assign_dev_data(device, batches)
batch_idx = self.batches.get_current_batch_idx()
assert success, "batches %s with seqs at %i failed to load" % \
(range(batch_idx, batch_idx + batch_adv_idx), batches[batch_adv_idx - 1].start_seq)
devices_batches.append(batches)
if not self.share_batches:
self.batches.advance(batch_adv_idx)
if self.share_batches:
self.batches.advance(batch_adv_idx)
return devices_batches
def prepare_device_for_batch(self, device):
""" :type device: Device.Device """
pass
def get_device_prepare_args(self):
return {"network": self.network, "updater": None}
def evaluate(self, batchess, results, result_format, num_frames):
"""
:param list[list[EngineBatch.Batch]] batchess: batches per device
:param list[list[numpy.ndarray]] results: results per device
:param list[str]|None result_format: describes what we have in a result list
:type num_frames: NumbersDict
:returns some score or None
:rtype: dict[str] | None
"""
assert results
assert result_format # train should always have the format
assert num_frames["data"] > 0
# We can get info such as "cost:..." and more info such as gradient_norm.
# See Device.initialize().
# We might also get gparams or ctc_priors or so. We will filter them out below when not needed.
results = [Device.make_result_dict(res, result_format) for res in results]
if 'weights' in results[0]:
for batch, result in zip(batchess, results):
self.batches.dataset.update_weights(batch[0].seqs, result['weights'])
del result['weights']
batch_norm_fact = 1 if not self.share_batches else 1.0 / len(self.devices)
summed_results = {}
for key in results[0].keys():
summed_results[key] = sum([res[key] for res in results]) * batch_norm_fact
# Accumulate for epoch stats.
for key, value in summed_results.items():
if key.startswith("gparam:"): continue
if key not in self.results:
self.results[key] = value # / float(num_frames[target])
else:
self.results[key] += value # / float(num_frames[target])
# Prepare eval info stats for this (multiple-)batch run.
eval_info = {}
for key, value in summed_results.items():
if key.startswith("gparam:"): continue
if key == "ctc_priors": continue
target = self._get_target_for_key(key)
eval_info[key] = value / float(num_frames[target])
return eval_info
def initialize(self):
"""
Called at the beginning of an epoch.
"""
pass
def reduce(self, num_frames):
pass
def _get_target_for_key(self, key):
try:
target = self.network.output[key.split(':')[-1]].attrs['target']
except Exception:
try:
target = self.network.hidden[key.split(':')[-1]].attrs['target']
except Exception:
target = 'classes'
available_data_keys = self.data.get_data_keys()
if target not in available_data_keys:
target = available_data_keys[0]
return target
def epoch_norm_factor_for_result(self, key):
target = self._get_target_for_key(key)
# Check for key specific behavior
if key.split(':')[-1] in self.network.output:
attrs = self.network.output[key.split(':')[-1]].attrs
if attrs.get('normalize_length', False):
return 1.0 / float(self.data.num_seqs)
# Default: Normalize by number of frames.
return 1.0 / float(self.num_frames[target])
def finalize(self):
"""
Called at the end of an epoch.
"""
assert self.num_frames["data"] > 0
# Note: self.num_frames could be greater than self.data.get_num_timesteps() in case of chunking.
for key, value in self.results.items():
if key != "ctc_priors":
self.results[key] *= self.epoch_norm_factor_for_result(key)
self.score = dict([(key,value) for (key, value) in self.results.items() if key.startswith("cost:")])
self.error = dict([(key,value) for (key, value) in self.results.items() if key.startswith("error:")])
self.finalized = True
class DeviceBatchRun(threading.Thread):
def __init__(self, parent, devices):
"""
:type parent: TaskThread
"""
threading.Thread.__init__(self, name="DeviceThread %s" % " ".join([dev.name for dev in devices]))
self.alloc_devices = devices
self.parent = parent
self.devices_batches_idx = None
self.run_start_batch_idx = None
self.eval_info = None; " :type: dict[str] | None "
self.allocated = False
self.processing = False
self.finished = True
self.crashed = False
self.num_frames = NumbersDict(0)
self.run_frames = NumbersDict(0)
self.daemon = True
self.active = True
self.result = { 'batchess': [], 'results': [], 'result_format': None, 'num_frames': 0 }
if self.alloc_devices:
self.start()
def allocate(self):
self.devices_batches_idx = self.parent.batches.get_current_batch_idx()
self.allocated_devices_batches = self.parent.allocate_devices(self.alloc_devices)
self.run_frames = NumbersDict(0)
for batches, device in zip(self.allocated_devices_batches, self.alloc_devices):
assert batches
assert batches[0].seqs
#assert batches[0].seqs[0].frame_length[1] > 0
device.num_updates += 1 if not device.update_specs['block_size'] else int(ceil(sum([len(batch.seqs) for batch in batches]) / float(device.update_specs['block_size'])))
self.run_frames += sum([batch.get_total_num_frames() for batch in batches])
if self.parent.share_batches:
self.run_frames /= len(self.alloc_devices)
assert self.run_frames.max_value() > 0
self.allocated = True
def finish(self):
"""
:returns whether everything is fine.
"""
device_results, outputs_format = self.device_collect_results()
if device_results is None:
if not getattr(sys, "exited", False):
print("device crashed on batch", self.run_start_batch_idx, file=log.v3)
self.parent.device_crash_batch = self.run_start_batch_idx
self.crashed = True
return False
assert len(device_results) == len(self.alloc_devices) == len(self.running_devices_batches)
if outputs_format and any([k.startswith("gparam:") for k in outputs_format]):
# WARNING: this code is untested and likely broken!
for i in range(len(self.alloc_devices)):
res = Device.make_result_dict(device_results[i], outputs_format)
self.alloc_devices[i].sync_net_train_params()
devnet = self.alloc_devices[i].get_net_train_params(self.parent.network)
vars = self.parent.network.get_all_params_vars()
for p, q in zip(vars, devnet):
p.set_value(q)
gparams = {}
for p in vars:
gparams[p] = numpy.zeros(p.get_value(borrow=True, return_internal_type=True).shape, dtype=theano.config.floatX)
for p in vars:
q = res["gparam:%s" % p.name]
if q.shape == p.get_value().shape:
gparams[p] = q
elif q.shape:
print("warning: shape for gradient does not match:", p.get_value().shape, q.shape, file=log.v2)
self.parent.updater.setNetParamDeltas(gparams)
self.parent.updater.update()
self.alloc_devices[i].set_net_params(self.parent.network)
self.result = { 'batchess': self.running_devices_batches,
'results': device_results,
'result_format': outputs_format,
'num_frames': self.num_frames }
self.eval_info = self.parent.evaluate(**self.result)
self.parent.lock.acquire()
self.print_process()
self.parent.lock.release()
return True
def run(self):
try:
while self.active and not getattr(sys, "exited", False):
if self.allocated and not self.finished:
self.device_run()
self.num_frames = self.run_frames
self.processing = True
self.allocated = False
self.finish()
self.finished = True
self.processing = False
else:
time.sleep(0.01)
except BaseException:
self.crashed = True
sys.excepthook(*sys.exc_info())
finally:
self.finished = True
def stop(self):
self.active = False
def device_run(self):
batch_idx = self.run_start_batch_idx = self.devices_batches_idx
assert len(self.alloc_devices) == len(self.allocated_devices_batches)
self.running_devices_batches = self.allocated_devices_batches
for device, batches in zip(self.alloc_devices, self.running_devices_batches):
if self.parent.network.recurrent:
print("running", device.targets["data"].shape[1], \
"sequence slices (%i nts)" % (device.targets["data"].shape[0] * device.targets["data"].shape[1]), end=' ', file=log.v5)
else:
print("running", device.targets["data"].shape[0] * device.targets["data"].shape[1], "frames", end=' ', file=log.v5)
if device.num_batches == 1:
print("of batch %i" % batch_idx, end=' ', file=log.v5)
else:
print("of batches %i-%i" % (batch_idx, batch_idx + device.num_batches - 1), end=' ', file=log.v5)
print("on device", device.name, file=log.v5)
device.run(self.parent.task)
#if not self.share batch_idx += device.num_batches
def device_collect_results(self):
device_results = []
outputs_format = None
for i, device in enumerate(self.alloc_devices):
try:
result, outputs_format_new = device.result()
except RuntimeError:
return None, None
if result is None:
return None, None
assert isinstance(result, list)
assert len(result) > 0 # we always expect to get some result
if i >= 1:
assert outputs_format == outputs_format_new, "We expect to always get the same output format."
outputs_format = outputs_format_new
device_results.append(result)
return device_results, outputs_format
def device_mem_usage_str(self, devices):
"""
:type devices: list[Device.Device]
:rtype: str | None
"""
if not devices:
return None
mem_info = [device.get_memory_info() for device in devices]
if len(mem_info) == 1 and mem_info[0] is None:
return None
mem_usage = [info.used if info else None for info in mem_info]
s = ["%s MB" % (mem / (1024*1024)) if mem is not None else "unknown" for mem in mem_usage]
return "/".join(s)
def print_process(self):
if not self.parent.interactive and not log.v[5]:
return
start_elapsed = time.time() - self.parent.start_time
complete = self.parent.batches.completed_frac()
assert complete > 0
total_time_estimated = start_elapsed / complete
remaining_estimated = total_time_estimated - start_elapsed
if log.verbose[5]:
mem_usage = self.device_mem_usage_str(self.alloc_devices)
info = [
self.parent.report_prefix,
"batch %i" % self.run_start_batch_idx]
if self.eval_info: # Such as score.
info += ["%s %s" % item for item in sorted(self.eval_info.items())]
info += [
"elapsed %s" % hms(start_elapsed),
"exp. remaining %s" % hms(remaining_estimated),
"complete %.02f%%" % (complete * 100)]
if mem_usage:
info += ["memory %s" % mem_usage]
print(", ".join(filter(None, info)), file=log.v5)
if self.parent.interactive:
progress_bar(complete, hms(remaining_estimated))
def run(self):
# Wrap run_inner() for better exception printing.
# Thread.__bootstrap_inner() ignores sys.excepthook.
try:
self.run_inner()
except ProcConnectionDied:
if not getattr(sys, "exited", False):
# Normally we should have caught that in run_inner(), so somewhat unexpected.
print("%s. Some device proc crashed unexpectedly." % self, file=log.v4)
# Just pass on. We have self.finalized == False which indicates the problem.
except Exception:
# Catch all standard exceptions.
# These are not device errors. We should have caught them in the code
# and we would leave self.finalized == False.
# Don't catch KeyboardInterrupt here because that will get send by the main thread
# when it is exiting. It's never by the user because SIGINT will always
# trigger KeyboardInterrupt in the main thread only.
try:
print("%s failed" % self.name, file=log.v1)
if log.v[4]:
sys.excepthook(*sys.exc_info())
print("")
finally:
# Exceptions are fatal. If we can recover, we should handle it in run_inner().
interrupt_main()
def run_inner(self):
self.start_time = time.time()
for device in self.devices:
device.prepare(epoch=self.epoch, **self.get_device_prepare_args())
self.initialize()
terminal_width, _ = terminal_size()
self.interactive = (log.v[3] and terminal_width >= 0)
print("starting task", self.task, file=log.v5)
for device in self.devices:
device.eval_batch_idx = -1
device.start_epoch_stats()
device.num_frames = 0
device.num_updates = 0
device.tot = 0
num_device_runs = 1 if self.share_batches else len(self.devices)
deviceRuns = [ self.DeviceBatchRun(self, [self.devices[i]] if not self.share_batches else self.devices) for i in range(num_device_runs) ]
results = { 'batchess': [], 'results': [], 'num_frames' : NumbersDict(0) }
run_frames = NumbersDict(0)
cost_result_format = -1
crashed = False
assert num_device_runs > 0
while True:
if getattr(sys, "exited", False):
# This happens when we exit Python.
# Without this check, this thread would keep running until all exit handlers of Python are done.
print("%s stopped" % self, file=log.v5)
crashed = True
break
for i in range(num_device_runs):
if deviceRuns[i].crashed or not deviceRuns[i].is_alive():
crashed = True
break
if deviceRuns[i].finished:
results['batchess'] += deviceRuns[i].result['batchess'][:]
results['results'] += deviceRuns[i].result['results'][:]
results['result_format'] = deviceRuns[i].result['result_format']
deviceRuns[i].finished = False
if crashed:
break
if cost_result_format < 0 and deviceRuns[i].result['result_format']:
for idx,fmt in enumerate(deviceRuns[i].result['result_format']):
if fmt and fmt.startswith('cost:'):
cost_result_format = idx
total_cost = 0
if results['results'] and cost_result_format >= 0:
total_cost = numpy.asarray(results['results'])[:,cost_result_format].sum()
if total_cost >= self.eval_batch_size or not self.batches.has_more():
if all(not (dev.finished or dev.allocated or dev.processing) for dev in deviceRuns):
results['num_frames'] = run_frames
self.num_frames += run_frames
if self.share_batches: run_frames *= len(self.devices)
self.reduce(run_frames)
self.eval_batch_idx += 1
run_frames = NumbersDict(0)
results['batchess'] = []
results['results'] = []
for device in self.devices:
device.num_frames = 0
device.num_updates = 0
if not self.batches.has_more():
break
else:
time.sleep(0.01)
match = True
while self.batches.has_more() and total_cost < self.eval_batch_size and match:
self.batch_idx = self.batches.get_current_batch_idx()
if self.batch_idx < self.start_batch:
self.batches.advance(1)
break
match = False
for i in range(num_device_runs):
if not deviceRuns[i].allocated:
deviceRuns[i].allocate()
run_frames += deviceRuns[i].run_frames
match = True
break
if not match:
time.sleep(0.01)
for run in deviceRuns:
run.stop()
if crashed: return
for device in self.devices:
device.finish_epoch_stats()
self.finalize()
if self.interactive: progress_bar()
self.elapsed = (time.time() - self.start_time)
class ModelBrokenError(Exception):
"""
We got a nan/inf at the result somewhere. This means that something is broken.
"""
def __init__(self, msg, batches):
"""
:type msg: str
:type batches: list[EngineBatch.Batch]
"""
assert len(batches) > 0
msg = "%s Starting at seq %i." % (msg, batches[0].start_seq)
super(ModelBrokenError, self).__init__(msg)
self.batches = batches
class TrainTaskThread(TaskThread):
def __init__(self, network, devices, data, batches, learning_rate, updater, seq_train_parallel=None, **kwargs):
"""
:type network: Network.LayerNetwork
:type devices: list[Device.Device]
:type data: Dataset.Dataset
:type batches: EngineBatch.BatchSetGenerator
:type learning_rate: float
:type updater: Updater.Updater
:type seq_train_parallel: Engine.SeqTrainParallelControl | None
"""
self.updater = updater
self.learning_rate = learning_rate
self.seq_train_parallel = seq_train_parallel
self.do_ctc_priors = network.ctc_priors is not None
self.ctc_priors = None
super(TrainTaskThread, self).__init__("train", network, devices, data=data, batches=batches, **kwargs)
def initialize(self):
super(TrainTaskThread, self).initialize()
self.score = 0
for device in self.devices:
device.set_learning_rate(self.learning_rate)
if not self.updater.isInitialized:
self.updater.initVars(self.network, None)
self.updater.setLearningRate(self.learning_rate)
if self.seq_train_parallel:
self.seq_train_parallel.train_start_epoch()
def prepare_device_for_batch(self, device):
""" :type device: Device.Device """
return
def get_device_prepare_args(self):
kwargs = super(TrainTaskThread, self).get_device_prepare_args()
kwargs["updater"] = self.updater
kwargs["train_param_args"] = self.network.train_param_args
return kwargs
def maybe_wait_for_batches(self, device, batches):
"""
:type device: Device
:type batches: list[Batch]
"""
if self.seq_train_parallel:
self.seq_train_parallel.train_wait_for_seqs(device=device, batches=batches)
def save_ctc_priors(self, filename, epoch_str):
assert self.ctc_priors is not None
return # this should be done using compute_priors
with open(filename, 'a') as f:
print(epoch_str, file=f)
numpy.savetxt(f, self.ctc_priors, newline=" ")
print(file=f)
class CopyManager():
class CopyThread(threading.Thread):
def __init__(self, device, network, copy_to_device):
threading.Thread.__init__(self, name="CopyThread %s" % device.name)
self.copy_to_device = copy_to_device
self.device = device
self.network = network
self.active = True
self.start()
def run(self):
if self.copy_to_device:
self.device.set_net_params(self.network)
self.result = True
else:
self.result = self.device.get_net_train_params(self.network)
self.active = False
def __init__(self, devices):
self.devices = devices
self.network = None
def _copy(self, copy_to_device):
threads = []
for device in self.devices:
threads.append(self.CopyThread(device, self.network, copy_to_device))
result = []
for thread in threads:
if thread.active:
thread.join()
result.append(thread.result)
return result
def copy_to_device(self, network):
self.network = network
return self._copy(True)
def copy_from_device(self):
return self._copy(False)
def reduce(self, num_frames):
for device in self.devices:
device.sync_net_train_params()
basenet = self.network.get_all_params_vars()
consnet = [numpy.zeros(p.get_value().shape, dtype='float32') for p in basenet]
hypnets = []
nparams = len(basenet)
encoded = []
for device in self.devices:
hypnets.append([ p for p in device.get_net_train_params(self.network) ])
assert len(hypnets[-1]) == len(basenet)
if len(hypnets) == 0:
consnet = basenet
elif len(hypnets) == 1:
consnet = hypnets[0]
else:
# consensus via average
for i in range(nparams):
num_updates = { dev.name : dev.get_total_cost() for net,dev in zip(hypnets,self.devices) if numpy.sum(abs(net[i] - basenet[i].get_value())) > numpy.float32(0) }
tot_updates = sum(num_updates.values()) / self.reduction_rate
if tot_updates:
consnet[i] = basenet[i].get_value() + numpy.sum([ (net[i] - basenet[i].get_value()) * float(num_updates[dev.name]) / tot_updates for net,dev in zip(hypnets,self.devices) if dev.name in num_updates ], axis = 0)
else:
print("warning: no update available for parameter", basenet[i], file=log.v3)
consnet[i] = basenet[i].get_value()
self.network.update_step = max([ dev.get_num_updates() for dev in self.devices ])
for p, q in zip(self.network.get_all_params_vars(), consnet):
p_shape = p.get_value(borrow=True, return_internal_type=True).shape
assert p_shape == q.shape
p.set_value(q)
encoded.append(q)
if len(hypnets) > 1:
for device in self.devices:
device.set_net_encoded_params(encoded)
return
try:
basenet = self.network.get_all_params_vars()
consnet = [numpy.zeros(p.get_value().shape, dtype='float32') for p in basenet]
hypnets = []
nparams = len(basenet)
encoded = []
#pipe = self.CopyManager(self.devices)
#hypnets = pipe.copy_from_device()
for device in self.devices:
hypnets.append([ p for p in device.get_net_train_params(self.network) ])
assert len(hypnets[-1]) == len(basenet)
if len(hypnets) == 0:
consnet = basenet
elif len(hypnets) == 1:
consnet = hypnets[0]
else:
# consensus via average
for i in range(nparams):
num_updates = { dev.name : dev.get_total_cost() for net,dev in zip(hypnets,self.devices) if numpy.sum(abs(net[i] - basenet[i].get_value())) > numpy.float32(0) }
tot_updates = sum(num_updates.values()) / self.reduction_rate
#num_updates = numpy.sum([ dev.num_updates for net,dev in zip(hypnets,self.devices) ])
#ndevs = len([ dev for dev in self.devices if abs(numpy.sum(net[i] - basenet[i].get_value())) > 0.0001 ])
#consnet[i] = basenet[i].get_value() + numpy.sum([(net[i] - basenet[i].get_value()) * (float(device.num_frames) / num_frames) for net,dev in zip(hypnets,self.devices) if basenet[i].layer.name in dev.update_specs['layers']], axis = 0)
if tot_updates:
consnet[i] = basenet[i].get_value() + numpy.sum([ (net[i] - basenet[i].get_value()) * grads[dev.name] * float(num_updates[dev.name]) / tot_updates for net,dev in zip(hypnets,self.devices) if dev.name in num_updates ], axis = 0)
else:
print("warning: no update available for parameter", basenet[i], file=log.v3)
consnet[i] = basenet[i].get_value()
#consnet[i] = basenet[i].get_value() + ndevs * numpy.sum([ (net[i] - basenet[i].get_value()) * (float(device.num_frames) / nframes) for net,dev in zip(hypnets,self.devices) ], axis = 0)
self.network.update_step = max([ dev.get_num_updates() for dev in self.devices ])
for p, q in zip(self.network.get_all_params_vars(), consnet):
p_shape = p.get_value(borrow=True, return_internal_type=True).shape
assert p_shape == q.shape
p.set_value(q)
encoded.append(q)
if len(hypnets) > 1:
for device in self.devices:
device.set_net_encoded_params(encoded)
except Exception as e:
print("network synchronization failed: ", e.message, file=log.v3)
if log.v4:
sys.excepthook(*sys.exc_info())
#pipe.copy_to_device(self.network)
def finalize(self):
super(TrainTaskThread, self).finalize()
if self.do_ctc_priors:
self.ctc_priors = self.results["ctc_priors"] / float(self.num_frames["data"])
if self.seq_train_parallel:
self.seq_train_parallel.train_finish_epoch()
class EvalTaskThread(TaskThread):
def __init__(self, network, devices, data, batches, **kwargs):
super(EvalTaskThread, self).__init__('eval', network, devices, data=data, batches=batches, **kwargs)
def initialize(self):
super(EvalTaskThread, self).initialize()
for device in self.devices:
device.set_net_params(self.network)
class ForwardTaskThread(TaskThread):
def __init__(self, network, devices, data, batches, eval_batch_size=0):
super(ForwardTaskThread, self).__init__('extract', network, devices, data, batches, eval_batch_size=eval_batch_size)
self.result = {}
def evaluate(self, batchess, results, result_format, num_frames):
fragments = collections.defaultdict(list)
for device_idx, batches in enumerate(batchess):
for batch_idx, batch in enumerate(batches):
for seq_idx, seq in enumerate(batch.seqs):
fragments[seq.seq_idx].append((seq.seq_start_frame['data'], seq, results[device_idx][batch_idx]))
for seq, parts in fragments.items():
prev_end_frame = -1
seq_idx = None
for part in sorted(parts):
assert part[0] == prev_end_frame + 1
prev_end_frame = part[1].seq_end_frame
self.result[seq] = numpy.concatenate([r[s.batch_frame_offset['data']:(s.seq_end_frame['data'] - s.seq_start_frame['data']),s.batch_slice,:]
for _, s, r in parts], axis=0)
class HDFForwardTaskThread(TaskThread):
def __init__(self, network, devices, data, batches, cache, compression="none"):
super(HDFForwardTaskThread, self).__init__('extract', network, devices, data, batches, eval_batch_size=1)
self.tags = []
self.cache = cache
self.network = network
self.num_seqs = 0
if network.get_layer('output'):
target = network.get_layer('output').attrs['target']
else:
target = 'classes'
cache.attrs['numTimesteps'] = 0
cache.attrs['inputPattSize'] = data.num_inputs
cache.attrs['numDims'] = 1
cache.attrs['numLabels'] = data.num_outputs[target]
self.compression=compression
if target in data.labels:
hdf5_strings(cache, 'labels', data.labels[target])
try:
cache.attrs['numSeqs'] = data.num_seqs
except Exception:
cache.attrs['numSeqs'] = 1
self.seq_lengths = cache.create_dataset("seqLengths", (cache.attrs['numSeqs'],), dtype='i', maxshape=(None,), compression=compression)
else:
self.seq_lengths = cache.create_dataset("seqLengths", (cache.attrs['numSeqs'],), dtype='i', compression=compression)
self.seq_dims = cache.create_dataset("seqDims", (cache.attrs['numSeqs'], 1), dtype='i', compression=compression)
try:
self.targets = { k: cache.create_dataset("targets/data/" + k, (data.get_num_timesteps(),), dtype='i', compression=compression) for k in data.get_target_list() }
except Exception:
self.targets = None
self.times = []
def initialize(self):
self.toffset = 0
def finalize(self):
hdf5_strings(self.cache, 'seqTags', self.tags)
if self.times:
times = self.cache.create_dataset("times", (len(self.times), 2), dtype='f')
times[...] = self.times
self.cache.attrs['numSeqs'] = self.num_seqs
def evaluate(self, batchess, results, result_format, num_frames):
"""
:param list[list[Batch]] batchess: batches per device
:param list[list[numpy.ndarray]] results: results per device
:param list[str]|None result_format: describes what we have in a result list
:type num_frames: NumbersDict
:returns some score or None
:rtype: dict[str] | None
"""
# Currently we support just a single dev with a single batch.
assert len(batchess) == 1
assert len(batchess[0]) == 1
assert len(results) == 1
assert len(results[0]) == 1
features = results[0][0]
batch = batchess[0][0]
from EngineBatch import Batch
assert isinstance(batch, Batch)
if "inputs" not in self.cache:
self.inputs = self.cache.create_dataset("inputs", (self.cache.attrs['numSeqs'], features.shape[-1]), dtype='f', maxshape=(None, None), compression=self.compression)
if features.shape[-1] > self.inputs.shape[1]:
self.inputs.resize(features.shape[-1],axis=1)
tt = 0
feats = []
self.num_seqs += batch.get_num_seqs()
for seq_idx in range(batch.start_seq, batch.end_seq):
if self.network.recurrent:
seqfeats = features[:, seq_idx - batch.start_seq]
if batch.end_seq - batch.start_seq > 1:
seqfeats = seqfeats[~numpy.all(seqfeats == 0,axis=1)]
if seqfeats.shape[0] == 0:
seqfeats = features[:, seq_idx - batch.start_seq]
else:
seq = batch.seqs[seq_idx - batch.start_seq]
seqfeats = features[
seq.batch_frame_offset["data"]:seq.batch_frame_offset["data"] + seq.frame_length["data"],
seq.batch_slice]
print("extracting", seqfeats.shape[-1], "features over", seqfeats.shape[0], "time steps for sequence", self.data.get_tag(seq_idx), file=log.v5)
self.cache.attrs['numTimesteps'] += seqfeats.shape[0]
tt += seqfeats.shape[0]
#self.seq_dims[seq_idx] = [seqfeats.shape[1]]
if self.seq_lengths.shape[0] <= seq_idx:
self.seq_lengths.resize(seq_idx+1,axis=0)
self.seq_lengths[seq_idx] = seqfeats.shape[0]
#self.inputs[self.toffset:self.toffset + seqfeats.shape[0]] = numpy.asarray(seqfeats)
feats.append(seqfeats)
self.tags.append(self.data.get_tag(seq_idx))
try:
times = self.data.get_times(seq_idx)
self.times.extend(times)
except Exception:
pass
if self.inputs.shape[1] < seqfeats.shape[1]:
self.inputs.resize(seqfeats.shape[1], axis=1)
if self.inputs.shape[0] < self.toffset + tt:
self.inputs.resize(self.toffset + tt, axis = 0)
self.inputs[self.toffset:self.toffset + tt,:feats[0].shape[1]] = numpy.concatenate(feats,axis=0)
self.cache.attrs['inputPattSize'] = self.inputs.shape[1]
self.toffset += tt
class ClassificationTaskThread(TaskThread):
def __init__(self, network, devices, data, batches):
super(ClassificationTaskThread, self).__init__('extract', network, devices, data, batches, eval_batch_size=1)
self.result = {}
def evaluate(self, batchess, results, result_format, num_frames):
assert len(batchess) == 1
assert len(batchess[0]) == 1
assert batchess[0][0].get_num_seqs() == 1
self.result[self.data.get_tag(batchess[0][0].start_seq)] = numpy.concatenate(results, axis=1)
class PriorEstimationTaskThread(TaskThread):
def __init__(self, network, devices, data, batches, priori_file, target, extract_type):
from Network import LayerNetwork
assert isinstance(network, LayerNetwork)
super(PriorEstimationTaskThread, self).__init__('extract', network=network, devices=devices, data=data, batches=batches)
self.priori_file = priori_file
self.target = target # e.g. "classes"
self.extract_type = extract_type
assert extract_type in ["log-posteriors", "log-posteriors-sum", "posteriors", "posteriors-sum"]
self.num_outputs = network.n_out[target][0]
self.sum_posteriors = numpy.zeros(int(self.num_outputs))
print("Prior estimation via posteriors of %r. output dimension = %i" % (target, self.num_outputs), file=log.v1)
if not extract_type.endswith("-sum"):
print("HINT: You can set extract=posteriors-sum in your config to speed up the estimation.", file=log.v1)
if extract_type.startswith("log-"):
print("NOTE: Posteriors are averaged in log-space. std-space might be better. Set extract=posteriors-sum.", file=log.v1)
if data.chunk_size != 0:
print("WARNING: Dataset uses chunking. You might want to disable that.", file=log.v1)
def evaluate(self, batchess, results, result_format, num_frames):
if self.extract_type.endswith("-sum"):
for ress in results:
for res in ress:
assert isinstance(res, numpy.ndarray)
assert res.ndim == 1
# Index-masked frames are zero, so this sum works.
self.sum_posteriors += res
else:
for ress in results:
for res in ress:
assert isinstance(res, numpy.ndarray)
assert res.ndim == 3
# Index-masked frames are zero, so this sum works.
self.sum_posteriors += numpy.sum(res, axis=(0, 1))
def finalize(self):
print("Dumping priors in +log-space to file", self.priori_file, file=log.v1)
print("Frames in total:", self.num_frames, file=log.v1)
average_posterior = self.sum_posteriors / self.num_frames[self.target]
if self.extract_type.startswith("log-"):
print("Posterior average was calculated in log-space", file=log.v1)
# We need to renormalize.
average_posterior -= numpy.log(numpy.sum(numpy.exp(average_posterior)))
else:
average_posterior = numpy.log(average_posterior)
print("Posterior average was calculated in std-space", file=log.v1)
numpy.savetxt(self.priori_file, average_posterior, delimiter=' ')
avg_sum = numpy.sum(numpy.exp(average_posterior))
print("Prior sum in std-space (should be close to 1.0):", avg_sum, file=log.v1)