-
Notifications
You must be signed in to change notification settings - Fork 24
/
eulerangles.py
427 lines (351 loc) · 13.4 KB
/
eulerangles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' Module implementing Euler angle rotations and their conversions
See:
* http://en.wikipedia.org/wiki/Rotation_matrix
* http://en.wikipedia.org/wiki/Euler_angles
* http://mathworld.wolfram.com/EulerAngles.html
See also: *Representing Attitude with Euler Angles and Quaternions: A
Reference* (2006) by James Diebel. A cached PDF link last found here:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5134
Euler's rotation theorem tells us that any rotation in 3D can be
described by 3 angles. Let's call the 3 angles the *Euler angle vector*
and call the angles in the vector :math:`alpha`, :math:`beta` and
:math:`gamma`. The vector is [ :math:`alpha`,
:math:`beta`. :math:`gamma` ] and, in this description, the order of the
parameters specifies the order in which the rotations occur (so the
rotation corresponding to :math:`alpha` is applied first).
In order to specify the meaning of an *Euler angle vector* we need to
specify the axes around which each of the rotations corresponding to
:math:`alpha`, :math:`beta` and :math:`gamma` will occur.
There are therefore three axes for the rotations :math:`alpha`,
:math:`beta` and :math:`gamma`; let's call them :math:`i` :math:`j`,
:math:`k`.
Let us express the rotation :math:`alpha` around axis `i` as a 3 by 3
rotation matrix `A`. Similarly :math:`beta` around `j` becomes 3 x 3
matrix `B` and :math:`gamma` around `k` becomes matrix `G`. Then the
whole rotation expressed by the Euler angle vector [ :math:`alpha`,
:math:`beta`. :math:`gamma` ], `R` is given by::
R = np.dot(G, np.dot(B, A))
See http://mathworld.wolfram.com/EulerAngles.html
The order :math:`G B A` expresses the fact that the rotations are
performed in the order of the vector (:math:`alpha` around axis `i` =
`A` first).
To convert a given Euler angle vector to a meaningful rotation, and a
rotation matrix, we need to define:
* the axes `i`, `j`, `k`
* whether a rotation matrix should be applied on the left of a vector to
be transformed (vectors are column vectors) or on the right (vectors
are row vectors).
* whether the rotations move the axes as they are applied (intrinsic
rotations) - compared the situation where the axes stay fixed and the
vectors move within the axis frame (extrinsic)
* the handedness of the coordinate system
See: http://en.wikipedia.org/wiki/Rotation_matrix#Ambiguities
We are using the following conventions:
* axes `i`, `j`, `k` are the `z`, `y`, and `x` axes respectively. Thus
an Euler angle vector [ :math:`alpha`, :math:`beta`. :math:`gamma` ]
in our convention implies a :math:`alpha` radian rotation around the
`z` axis, followed by a :math:`beta` rotation around the `y` axis,
followed by a :math:`gamma` rotation around the `x` axis.
* the rotation matrix applies on the left, to column vectors on the
right, so if `R` is the rotation matrix, and `v` is a 3 x N matrix
with N column vectors, the transformed vector set `vdash` is given by
``vdash = np.dot(R, v)``.
* extrinsic rotations - the axes are fixed, and do not move with the
rotations.
* a right-handed coordinate system
The convention of rotation around ``z``, followed by rotation around
``y``, followed by rotation around ``x``, is known (confusingly) as
"xyz", pitch-roll-yaw, Cardan angles, or Tait-Bryan angles.
'''
import math
import numpy as np
_FLOAT_EPS_4 = np.finfo(float).eps * 4.0
def euler2mat(z=0, y=0, x=0):
''' Return matrix for rotations around z, y and x axes
Uses the z, then y, then x convention above
Parameters
----------
z : scalar
Rotation angle in radians around z-axis (performed first)
y : scalar
Rotation angle in radians around y-axis
x : scalar
Rotation angle in radians around x-axis (performed last)
Returns
-------
M : array shape (3,3)
Rotation matrix giving same rotation as for given angles
Examples
--------
>>> zrot = 1.3 # radians
>>> yrot = -0.1
>>> xrot = 0.2
>>> M = euler2mat(zrot, yrot, xrot)
>>> M.shape == (3, 3)
True
The output rotation matrix is equal to the composition of the
individual rotations
>>> M1 = euler2mat(zrot)
>>> M2 = euler2mat(0, yrot)
>>> M3 = euler2mat(0, 0, xrot)
>>> composed_M = np.dot(M3, np.dot(M2, M1))
>>> np.allclose(M, composed_M)
True
You can specify rotations by named arguments
>>> np.all(M3 == euler2mat(x=xrot))
True
When applying M to a vector, the vector should column vector to the
right of M. If the right hand side is a 2D array rather than a
vector, then each column of the 2D array represents a vector.
>>> vec = np.array([1, 0, 0]).reshape((3,1))
>>> v2 = np.dot(M, vec)
>>> vecs = np.array([[1, 0, 0],[0, 1, 0]]).T # giving 3x2 array
>>> vecs2 = np.dot(M, vecs)
Rotations are counter-clockwise.
>>> zred = np.dot(euler2mat(z=np.pi/2), np.eye(3))
>>> np.allclose(zred, [[0, -1, 0],[1, 0, 0], [0, 0, 1]])
True
>>> yred = np.dot(euler2mat(y=np.pi/2), np.eye(3))
>>> np.allclose(yred, [[0, 0, 1],[0, 1, 0], [-1, 0, 0]])
True
>>> xred = np.dot(euler2mat(x=np.pi/2), np.eye(3))
>>> np.allclose(xred, [[1, 0, 0],[0, 0, -1], [0, 1, 0]])
True
Notes
-----
The direction of rotation is given by the right-hand rule (orient
the thumb of the right hand along the axis around which the rotation
occurs, with the end of the thumb at the positive end of the axis;
curl your fingers; the direction your fingers curl is the direction
of rotation). Therefore, the rotations are counterclockwise if
looking along the axis of rotation from positive to negative.
'''
Ms = []
if z:
cosz = math.cos(z)
sinz = math.sin(z)
Ms.append(np.array(
[[cosz, -sinz, 0],
[sinz, cosz, 0],
[0, 0, 1]]))
if y:
cosy = math.cos(y)
siny = math.sin(y)
Ms.append(np.array(
[[cosy, 0, siny],
[0, 1, 0],
[-siny, 0, cosy]]))
if x:
cosx = math.cos(x)
sinx = math.sin(x)
Ms.append(np.array(
[[1, 0, 0],
[0, cosx, -sinx],
[0, sinx, cosx]]))
if Ms:
return reduce(np.dot, Ms[::-1])
return np.eye(3)
def mat2euler(M, cy_thresh=None):
''' Discover Euler angle vector from 3x3 matrix
Uses the conventions above.
Parameters
----------
M : array-like, shape (3,3)
cy_thresh : None or scalar, optional
threshold below which to give up on straightforward arctan for
estimating x rotation. If None (default), estimate from
precision of input.
Returns
-------
z : scalar
y : scalar
x : scalar
Rotations in radians around z, y, x axes, respectively
Notes
-----
If there was no numerical error, the routine could be derived using
Sympy expression for z then y then x rotation matrix, which is::
[ cos(y)*cos(z), -cos(y)*sin(z), sin(y)],
[cos(x)*sin(z) + cos(z)*sin(x)*sin(y), cos(x)*cos(z) - sin(x)*sin(y)*sin(z), -cos(y)*sin(x)],
[sin(x)*sin(z) - cos(x)*cos(z)*sin(y), cos(z)*sin(x) + cos(x)*sin(y)*sin(z), cos(x)*cos(y)]
with the obvious derivations for z, y, and x
z = atan2(-r12, r11)
y = asin(r13)
x = atan2(-r23, r33)
Problems arise when cos(y) is close to zero, because both of::
z = atan2(cos(y)*sin(z), cos(y)*cos(z))
x = atan2(cos(y)*sin(x), cos(x)*cos(y))
will be close to atan2(0, 0), and highly unstable.
The ``cy`` fix for numerical instability below is from: *Graphics
Gems IV*, Paul Heckbert (editor), Academic Press, 1994, ISBN:
0123361559. Specifically it comes from EulerAngles.c by Ken
Shoemake, and deals with the case where cos(y) is close to zero:
See: http://www.graphicsgems.org/
The code appears to be licensed (from the website) as "can be used
without restrictions".
'''
M = np.asarray(M)
if cy_thresh is None:
try:
cy_thresh = np.finfo(M.dtype).eps * 4
except ValueError:
cy_thresh = _FLOAT_EPS_4
r11, r12, r13, r21, r22, r23, r31, r32, r33 = M.flat
# cy: sqrt((cos(y)*cos(z))**2 + (cos(x)*cos(y))**2)
cy = math.sqrt(r33*r33 + r23*r23)
if cy > cy_thresh: # cos(y) not close to zero, standard form
z = math.atan2(-r12, r11) # atan2(cos(y)*sin(z), cos(y)*cos(z))
y = math.atan2(r13, cy) # atan2(sin(y), cy)
x = math.atan2(-r23, r33) # atan2(cos(y)*sin(x), cos(x)*cos(y))
else: # cos(y) (close to) zero, so x -> 0.0 (see above)
# so r21 -> sin(z), r22 -> cos(z) and
z = math.atan2(r21, r22)
y = math.atan2(r13, cy) # atan2(sin(y), cy)
x = 0.0
return z, y, x
def euler2quat(z=0, y=0, x=0):
''' Return quaternion corresponding to these Euler angles
Uses the z, then y, then x convention above
Parameters
----------
z : scalar
Rotation angle in radians around z-axis (performed first)
y : scalar
Rotation angle in radians around y-axis
x : scalar
Rotation angle in radians around x-axis (performed last)
Returns
-------
quat : array shape (4,)
Quaternion in w, x, y z (real, then vector) format
Notes
-----
We can derive this formula in Sympy using:
1. Formula giving quaternion corresponding to rotation of theta radians
about arbitrary axis:
http://mathworld.wolfram.com/EulerParameters.html
2. Generated formulae from 1.) for quaternions corresponding to
theta radians rotations about ``x, y, z`` axes
3. Apply quaternion multiplication formula -
http://en.wikipedia.org/wiki/Quaternions#Hamilton_product - to
formulae from 2.) to give formula for combined rotations.
'''
z = z/2.0
y = y/2.0
x = x/2.0
cz = math.cos(z)
sz = math.sin(z)
cy = math.cos(y)
sy = math.sin(y)
cx = math.cos(x)
sx = math.sin(x)
quat = np.array([
cx*cy*cz - sx*sy*sz,
cx*sy*sz + cy*cz*sx,
cx*cz*sy - sx*cy*sz,
cx*cy*sz + sx*cz*sy])
if quat[0] < 0:
quat = - quat
return quat
def quat2euler(q):
''' Return Euler angles corresponding to quaternion `q`
Parameters
----------
q : 4 element sequence
w, x, y, z of quaternion
Returns
-------
z : scalar
Rotation angle in radians around z-axis (performed first)
y : scalar
Rotation angle in radians around y-axis
x : scalar
Rotation angle in radians around x-axis (performed last)
Notes
-----
It's possible to reduce the amount of calculation a little, by
combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
the reduction in computation is small, and the code repetition is
large.
'''
# delayed import to avoid cyclic dependencies
import nibabel.quaternions as nq
return mat2euler(nq.quat2mat(q))
def euler2angle_axis(z=0, y=0, x=0):
''' Return angle, axis corresponding to these Euler angles
Uses the z, then y, then x convention above
Parameters
----------
z : scalar
Rotation angle in radians around z-axis (performed first)
y : scalar
Rotation angle in radians around y-axis
x : scalar
Rotation angle in radians around x-axis (performed last)
Returns
-------
theta : scalar
angle of rotation
vector : array shape (3,)
axis around which rotation occurs
Examples
--------
>>> theta, vec = euler2angle_axis(0, 1.5, 0)
>>> print(theta)
1.5
>>> np.allclose(vec, [0, 1, 0])
True
'''
# delayed import to avoid cyclic dependencies
import nibabel.quaternions as nq
return nq.quat2angle_axis(euler2quat(z, y, x))
def angle_axis2euler(theta, vector, is_normalized=False):
''' Convert angle, axis pair to Euler angles
Parameters
----------
theta : scalar
angle of rotation
vector : 3 element sequence
vector specifying axis for rotation.
is_normalized : bool, optional
True if vector is already normalized (has norm of 1). Default
False
Returns
-------
z : scalar
y : scalar
x : scalar
Rotations in radians around z, y, x axes, respectively
Examples
--------
>>> z, y, x = angle_axis2euler(0, [1, 0, 0])
>>> np.allclose((z, y, x), 0)
True
Notes
-----
It's possible to reduce the amount of calculation a little, by
combining parts of the ``angle_axis2mat`` and ``mat2euler``
functions, but the reduction in computation is small, and the code
repetition is large.
'''
# delayed import to avoid cyclic dependencies
import nibabel.quaternions as nq
M = nq.angle_axis2mat(theta, vector, is_normalized)
return mat2euler(M)
def pose2T(pose):
import nibabel.quaternions as nq
R = nq.quat2mat(pose[3:])
T = np.array([[R[0,0], R[0,1], R[0,2], pose[0]],
[R[1,0], R[1,1], R[1,2], pose[1]],
[R[2,0], R[2,1], R[2,2], pose[2]],
[0,0,0,1]])
# T = np.vstack((T, [0, 0, 0, 1]))
return T