-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTrain_HABIT.py
1003 lines (841 loc) · 44.2 KB
/
Train_HABIT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function
import ctypes
libgcc_s = ctypes.CDLL('libgcc_s.so.1')
import random
import time
import argparse
import os
import sys
import ast
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data.sampler import SubsetRandomSampler
from torch.nn import BatchNorm2d
from sklearn.cluster import KMeans
from WideResNet import WideResnet
from datasets.cifar import get_train_loader, get_val_loader
from utils import accuracy, compute_mAP, setup_default_logging, AverageMeter, WarmupCosineLrScheduler, visualizaion
import torchvision.models as models
from models.densenet import densenet121, densenet161
from models import ResMLP, MLPMixer
from models.mlp_mixer import mixer_b16, MlpMixer
from g_mlp_pytorch import gMLP, gMLPVision
from models.conv_mlp import ssl_ResMLP, ssl_densenet121
from models.alexnet import AlexNet
from sklearn.metrics import roc_auc_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import matthews_corrcoef
import torch_optimizer
import tensorboard_logger
import cv2
from scipy.stats import wasserstein_distance
from torch.nn.parallel import DistributedDataParallel as DDP
log_dir = './logs'
def set_model(args):
if args.backbone == 'WideResnet':
model = WideResnet(n_classes=args.n_classes,k=args.wresnet_k, n=args.wresnet_n, proj=False)
elif args.backbone == 'ConvMLP':
model_conv = ssl_densenet121(progress=False, pretrained=args.pre_trained, fusion=args.ConvMlp_fusion)
num_ftrs = model_conv.classifier.in_features
model_conv.classifier = nn.Linear(num_ftrs, args.n_classes) # 14
model_mlp = MlpMixer(
num_classes=args.n_classes,
num_blocks=args.num_blocks, #12, [2--9.9M. 4--19.7M]
patch_size=args.patch_size, #16,
hidden_dim=768,
tokens_mlp_dim=384,
channels_mlp_dim=3072,
image_size=112 #224
)
if args.pre_trained and args.MLP_ckpt != None:
model_mlp.load_from(np.load(args.MLP_ckpt))
print ('Finish loading the MLP pre-trained model!')
model = [model_conv, model_mlp]
if args.checkpoint != '':
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['state_dict'])
save_epoch = checkpoint['epoch']
print('loaded from checkpoint: %s'%args.checkpoint)
else:
save_epoch = 0
save_optim = None
if len(args.gpu)>1:
torch.distributed.init_process_group(backend="nccl",init_method='tcp://localhost:1001', rank=0, world_size=1)
model.train()
model.cuda()
model = DDP(model, device_ids=[0,1])
else:
if args.backbone == 'ConvMLP':
for i in range(2):
model[i].train()
model[i].cuda()
else:
model.train()
model.cuda()
criteria_x = nn.CrossEntropyLoss().cuda()
criteria_u = nn.CrossEntropyLoss(reduction='none').cuda()
if args.eval_ema:
if args.backbone == 'WideResnet':
ema_model = WideResnet(n_classes=args.n_classes,k=args.wresnet_k, n=args.wresnet_n, proj=False)
elif args.backbone == 'ConvMLP':
ema_model_conv = ssl_densenet121(progress=False, pretrained=args.pre_trained, fusion=args.ConvMlp_fusion)
num_ftrs = ema_model_conv.classifier.in_features
ema_model_conv.classifier = nn.Linear(num_ftrs, args.n_classes) # 14
ema_model_mlp = MlpMixer(
num_classes=args.n_classes,
num_blocks=args.num_blocks, #12, [2--9.9M. 4--19.7M]
patch_size=args.patch_size, #16,
hidden_dim=768,
tokens_mlp_dim=384,
channels_mlp_dim=3072,
image_size=112 #224
)
if args.pre_trained and args.MLP_ckpt != None:
ema_model_mlp.load_from(np.load(args.MLP_ckpt))
print ('Finish loading the MLP pre-trained model!')
ema_model = [ema_model_conv, ema_model_mlp]
if args.backbone == 'ConvMLP':
for i in range(2):
if args.dynamic_ema:
for param_q, param_k in zip(model[i].parameters(), ema_model[i].parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = True # not update by gradient for eval_net
else:
for param_q, param_k in zip(model[i].parameters(), ema_model[i].parameters()):
param_k.data.copy_(param_q.detach().data) # initialize
param_k.requires_grad = False # not update by gradient for eval_net
ema_model[i].cuda()
ema_model[i].eval()
else:
if args.dynamic_ema:
for param_q, param_k in zip(model.parameters(), ema_model.parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = True # not update by gradient for eval_net
ema_model.cuda()
ema_model.train()
else:
for param_q, param_k in zip(model.parameters(), ema_model.parameters()):
param_k.data.copy_(param_q.detach().data) # initialize
param_k.requires_grad = False # not update by gradient for eval_net
ema_model.cuda()
ema_model.eval()
else:
ema_model = None
if args.dynamic_ema:
if args.backbone == 'densenet121':
gate = []
for i in range(4):
gate.append(torch.nn.Parameter(torch.tensor([1.0]), requires_grad=True).cuda())
layer_bank = ['denseblock1','denseblock2','denseblock3','denseblock4']
return model, criteria_x, criteria_u, ema_model, save_epoch, layer_bank, gate
return model, criteria_x, criteria_u, ema_model, save_epoch
def sigmoid(x, gamma=1, k=1):
return 1 / (k + torch.exp(-x*gamma))
grads = {}
def save_grad(name):
def hook(grad):
grads[name] = grad
return hook
@torch.no_grad()
def ema_model_update(model, ema_model, ema_m):
"""
Momentum update of evaluation model (exponential moving average)
"""
for param_train, param_eval in zip(model.parameters(), ema_model.parameters()):
param_eval.copy_(param_eval * ema_m + param_train.detach() * (1-ema_m))
for buffer_train, buffer_eval in zip(model.buffers(), ema_model.buffers()): # Copy BN params.
buffer_eval.copy_(buffer_train)
def calculate_bn_params_diff(net1, net2):
bn_layers1 = [m for m in net1.modules() if isinstance(m, nn.BatchNorm2d)]
bn_layers2 = [m for m in net2.modules() if isinstance(m, nn.BatchNorm2d)]
layer_diffs = []
for bn1, bn2 in zip(bn_layers1, bn_layers2):
gamma_diff = torch.sum((bn1.weight - bn2.weight) ** 2)
beta_diff = torch.sum((bn1.bias - bn2.bias) ** 2)
layer_diff = torch.sqrt(gamma_diff + beta_diff + 1e-6)
layer_diffs.append(layer_diff.item())
layer_diffs_mean = sum(layer_diffs) / len(layer_diffs)
return sigmoid(torch.tensor(layer_diffs_mean, device="cuda"))
@torch.no_grad()
def CMH_ema_model_update(model, ema_model, ema_m, ent_p):
"""
Momentum update of evaluation model (exponential moving average)
"""
ema_m_update = ema_m * calculate_bn_params_diff(model, ema_model)
ema_m_update *= sigmoid(ent_p)
ema_m *= 1 - 0.1*ema_m_update.item()
for param_train, param_eval in zip(model.parameters(), ema_model.parameters()):
param_eval.copy_(param_eval * ema_m + param_train.detach() * (1-ema_m))
for buffer_train, buffer_eval in zip(model.buffers(), ema_model.buffers()): # Copy BN params.
buffer_eval.copy_(buffer_train)
@torch.no_grad()
def dynamic_ema_model_update(model, ema_model, ema_m, layer_bank=['denseblock1','denseblock2','denseblock3','denseblock4'], layer_weight=[1,1,1,1]):
"""
Momentum update of evaluation model (exponential moving average)
"""
for (name_train, param_train), (name_eval, param_eval) in zip(model.named_parameters(), ema_model.named_parameters()):
for idx, layer in enumerate(layer_bank):
if name_train.split('.')[1] == layer:
layer_weight[idx] = sigmoid(layer_weight[idx]**2)+1.0/0.99-1.0
_gate = layer_weight[idx]
param_eval = (param_eval * (ema_m*_gate) + param_train.detach() * (1-(ema_m*_gate))) # param_eval.requires_grad
if name_train.split('.')[1] not in layer:
param_eval = (param_eval * ema_m + param_train.detach() * (1-ema_m))
for buffer_train, buffer_eval in zip(model.buffers(), ema_model.buffers()): # Copy BN params.
buffer_eval = (buffer_train)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def computeAUROC(dataGT, dataPRED, classCount, args):
classCount = args.n_classes
if len(dataGT.shape) == 1:
dataGT = torch.eye(args.n_classes)[dataGT.long().tolist()]
outAUROC = []
datanpGT = dataGT.cpu().numpy()
datanpPRED = dataPRED.cpu().numpy()
for i in range(classCount):
try:
outAUROC.append(roc_auc_score(datanpGT[:, i], datanpPRED[:, i]))
except ValueError:
pass
return outAUROC
def mean_class_recall(y_true, y_pred):
"""
Mean class recall.
"""
y_pred = np.array(y_pred)
y_true = np.array(y_true)
class_recall = []
target_uniq = np.unique(y_true)
for label in target_uniq:
indexes = np.nonzero(label == y_true)[0]
recall = np.sum(y_true[indexes] == y_pred[indexes]) / len(indexes)
class_recall.append(recall)
return np.mean(class_recall)
def compensated_feature(x, y, class_num, max_size=10):
device = x.device
compensated_samples = []
compensated_labels = []
for i in range(class_num):
if i not in y:
continue
class_samples = x[y == i]
compensated_num = max_size - (y == i).sum().item()
mean = class_samples.mean(dim=0).detach().cpu().numpy()
normed = class_samples - class_samples.mean(dim=0, keepdim=True)
covariance = (normed.t() @ normed) / (len(class_samples) - 1) + 1e-6 * torch.eye(normed.shape[1], device=device)
covariance = covariance.detach().cpu().numpy()
covariance[np.isnan(covariance)] = 1.0
gaussian_samples = np.random.multivariate_normal(mean, covariance, compensated_num)
gaussian_samples = torch.from_numpy(gaussian_samples).to(device)
gaussian_labels = torch.full((compensated_num,), i, dtype=torch.long, device=device)
compensated_samples.append(gaussian_samples)
compensated_labels.append(gaussian_labels)
compensated_samples = torch.cat(compensated_samples, dim=0)
compensated_labels = torch.cat(compensated_labels, dim=0)
return compensated_samples, compensated_labels
def train_one_epoch(epoch,
model,
ema_model,
layer_bank,
gate,
matchnet,
discriminator_img,
criteria_x,
criteria_u,
optim,
d_img_optim,
d_match_optim,
lr_schdlr,
dltrain_x,
dltrain_u,
args,
n_iters,
logger,
prob_list,
l_probs_list,
prob_list_ema,
example_stats,
):
if args.backbone == 'ConvMLP':
model[0].train()
model[1].train()
else:
model.train()
if args.dynamic_ema:
ema_model.train()
loss_x_meter = AverageMeter()
loss_u_meter = AverageMeter()
n_correct_u_lbs_meter = AverageMeter()
n_strong_aug_meter = AverageMeter()
mask_meter = AverageMeter()
n_correct_u_lbs_all_meter = AverageMeter()
guess_recall = AverageMeter()
ul_true_loss_meter = AverageMeter()
ul_true_select_meter = AverageMeter()
ul_true_unselect_meter = AverageMeter()
weight_term_meter = AverageMeter()
epoch_start = time.time() # start time
dl_x, dl_u = iter(dltrain_x), iter(dltrain_u)
for it in range(n_iters): # Training
ims_x_weak, lbs_x = next(dl_x)
if args.diff_aug:
(ims_u_weak, ims_u_strong, ims_u_strong_mlp), lbs_u_real = next(dl_u)
else:
(ims_u_weak, ims_u_strong), lbs_u_real = next(dl_u)
lbs_x = lbs_x.cuda()
lbs_u_real = lbs_u_real.cuda()
bt = ims_x_weak.size(0)
mu = int(ims_u_weak.size(0) // bt)
imgs = torch.cat([ims_x_weak, ims_u_weak, ims_u_strong], dim=0).cuda()
if args.diff_aug:
imgs_mlp = torch.cat([ims_x_weak, ims_u_weak, ims_u_strong_mlp], dim=0).cuda()
if 'MLP' not in args.backbone:
logits, feat = model(imgs,True)
feat_x = feat[:bt]
feat_u_w, feat_u_s = torch.split(feat[bt:], bt * mu)
elif args.backbone == 'ConvMLP':
if args.ConvMlp_fusion:
model_conv = model[0]
model_mlp = model[1]
logits_conv, side_features_conv = model_conv(imgs)
logits_mlp, side_features_mlp = model_mlp(imgs)
else:
model_conv = model[0]
model_mlp = model[1]
logits_conv, feat_conv = model_conv(imgs,True)
if args.RFC:
feat_compensation, lbs_compensation = compensated_feature(torch.split(feat_conv[bt:], bt*mu)[0], lbs_u_real, args.n_classes, max_size=bt*mu)
logits_compensation = model_conv.classifier(feat_compensation.float())
loss_compensation = criteria_u(logits_compensation, lbs_compensation.long()).mean()
if args.diff_aug:
logits_mlp = model_mlp(imgs_mlp)
else:
logits_mlp = model_mlp(imgs)
else:
logits = model(imgs)
if args.backbone == 'ConvMLP':
logits_x_conv = logits_conv[:bt]
logits_x_mlp = logits_mlp[:bt]
logits_u_w, logits_u_s_conv = torch.split(logits_conv[bt:], bt * mu)
_, logits_u_s_mlp = torch.split(logits_mlp[bt:], bt * mu)
logits_u_s = logits_u_s_mlp ##
loss_x = (criteria_x(logits_x_conv, lbs_x.long()) + criteria_x(logits_x_mlp, lbs_x.long())) / 2 # CE loss
else:
logits_x = logits[:bt]
logits_u_w, logits_u_s = torch.split(logits[bt:], bt * mu)
loss_x = criteria_x(logits_x, lbs_x.long()) # CE loss
if args.mean_teacher:
logits, feat = ema_model(imgs,True)
logits_x = logits[:bt]
logits_u_w, _ = torch.split(logits[bt:], bt * mu)
loss_x += criteria_x(logits_x, lbs_x.long())
loss_x /= 2.0
if args.dynamic_ema:
probs = torch.softmax(logits_u_w, dim=1)
scores, lbs_u_guess = torch.max(probs, dim=1) ## get hard-pseudo label via weak-aug data's pred
mask = scores.ge(args.thr).float() ## scores.ge: 1 if scores>=thr; else 0;
else:
with torch.no_grad():
probs = torch.softmax(logits_u_w, dim=1)
if args.DA:
prob_list.append(probs.mean(0))
if len(prob_list)>32:
prob_list.pop(0) ## maintain a 32-length squeue prob_list to calculate distributions
prob_avg = torch.stack(prob_list,dim=0).mean(0)
probs = probs / prob_avg
if args.standard_DA:
l_probs = torch.softmax(logits_x, dim=1)
l_probs_list.append(l_probs.mean(0))
if len(l_probs_list)>32:
l_probs_list.pop(0) ## maintain a 32-length squeue prob_list to calculate distributions
probs = probs * torch.stack(l_probs_list,dim=0).mean(0)
probs = probs / probs.sum(dim=1, keepdim=True) ## Normalize the prob_list
if args.standard_DA:
probs = probs ** (1. / args.DA_T) # T=0.5
probs = probs / probs.sum(dim=1, keepdim=True)
scores, lbs_u_guess = torch.max(probs, dim=1) ## get hard-pseudo label via weak-aug data's pred
mask = scores.ge(args.thr).float() ## scores.ge: 1 if scores>=thr; else 0;
ul_true_loss = criteria_x(logits_u_w, lbs_u_real.long())
ul_true_loss_meter.update(ul_true_loss.item())
ul_true_select_loss = (criteria_u(logits_u_s, lbs_u_real)*mask).sum()/(mask.sum()+1e-5)
ul_true_select_meter.update(ul_true_select_loss.item())
ul_true_unselect_loss = (criteria_u(logits_u_s, lbs_u_real)*(1-mask)).sum()/((1-mask).sum()+1e-5)
ul_true_unselect_meter.update(ul_true_unselect_loss.item())
if args.dynamic_ema:
loss_u = (criteria_u(logits_u_s, lbs_u_guess) * mask).mean()
else:
with torch.no_grad():
probs = probs.detach()
if args.backbone == 'ConvMLP':
loss_u = (criteria_u(logits_u_s_conv, lbs_u_guess) * mask).mean()
loss_u += (criteria_u(logits_u_s_mlp, lbs_u_guess) * mask).mean()
loss_u /= 2.0
######
# Add Symmetric Loss (option):
mask1 = scores.ge(0.95).float() # 0.95, 0.85
mask2 = scores.ge(0.98).float() # 0.96, 0.95
_mask = mask1-mask2 # _mask: scores in [0.95-0.96]
sym_loss_conv = - ((logits_u_w*logits_u_s_conv).sum(1) / (torch.norm(logits_u_w, dim=1)*torch.norm(logits_u_s_conv, dim=1)+1e-6) * _mask).mean() # Cosine similarity
sym_loss_mlp = - ((logits_u_w*logits_u_s_mlp).sum(1) / (torch.norm(logits_u_w, dim=1)*torch.norm(logits_u_s_mlp, dim=1)+1e-6) * _mask).mean() # Cosine similarity
loss_u += (sym_loss_conv+sym_loss_mlp)/2.0
if args.RFC:
loss_u += loss_compensation*0.5
######
else:
loss_u = (criteria_u(logits_u_s, lbs_u_guess) * mask).mean() # CE loss of Unlabelled data
if args.long_tail:
class_reweight = []
lbs_u_guess_select = [lbs_u_guess[m] for m,n in enumerate(mask) if n==1]
for i in range(args.n_classes):
class_reweight.append(len([q for p,q in enumerate(lbs_u_guess_select) if q==i]))
reweight_norm = [i/(sum(class_reweight)+1e-5) for i in class_reweight] # + reweight
loss_u = criteria_u(logits_u_s, lbs_u_guess) * mask
for i in range(args.n_classes):
for p,q in enumerate(lbs_u_guess):
if q==i and mask[p]==1:
loss_u[p] *= reweight_norm[i]
loss_u = loss_u.mean()
if it == 1 and args.analysis == True:
logger.info("GT loss: ")
logger.info(list(((criteria_u(logits_u_s, lbs_u_real)).cpu().detach().numpy())))
logger.info("Top-1 Prob: ")
logger.info(list(scores.cpu().detach().numpy()))
logger.info("Prediction class: ")
logger.info(list(lbs_u_guess.cpu().detach().numpy()))
logger.info("Prediction prob: ")
logger.info(list([probs[i,j].cpu().detach().item() for i,j in enumerate(lbs_u_guess)])[:10])
logger.info("Mask: ")
logger.info(list(mask.cpu().detach().numpy()))
logger.info("Label: ")
logger.info(list(lbs_u_real.cpu().detach().numpy()))
loss = loss_x + args.lam_u * loss_u
if args.dynamic_ema:
for i,j in enumerate((gate)):
gate[i].register_hook(save_grad('gate'+str(i+1)))
if args.backbone == 'ConvMLP':
optim[0].zero_grad()
optim[1].zero_grad()
loss.backward()
nn.utils.clip_grad_value_(model[1].parameters(), clip_value=1.0) # Only for MLP-mixer
optim[0].step()
lr_schdlr[0].step()
optim[1].step()
lr_schdlr[1].step()
else:
optim.zero_grad()
loss.backward()
nn.utils.clip_grad_value_(model.parameters(), clip_value=1.0) # Only for MLP-mixer
optim.step()
lr_schdlr.step()
if it % args.ema_step == 0:
if args.eval_ema:
if args.dynamic_ema:
dynamic_ema_model_update(model, ema_model, args.ema_m, layer_bank=layer_bank, layer_weight=gate)
else:
with torch.no_grad():
if args.backbone == 'ConvMLP':
if args.CMH:
CMH_ema_model_update(model[0], ema_model[0], args.ema_m, ul_true_loss.item())
CMH_ema_model_update(model[1], ema_model[1], args.ema_m, ul_true_loss.item())
else:
ema_model_update(model[0], ema_model[0], args.ema_m)
ema_model_update(model[1], ema_model[1], args.ema_m)
else:
ema_model_update(model, ema_model, args.ema_m)
loss_x_meter.update(loss_x.item())
loss_u_meter.update(loss_u.item())
mask_meter.update(mask.mean().item())
corr_u_lb = (lbs_u_guess == lbs_u_real).float() * mask
n_correct_u_lbs_meter.update(corr_u_lb.sum().item())
n_strong_aug_meter.update(mask.sum().item())
corr_u_lb_all = (lbs_u_guess == lbs_u_real).float()
n_correct_u_lbs_all_meter.update(corr_u_lb_all.sum().item())
guess_recall.update((corr_u_lb.sum()/(corr_u_lb_all.sum()+1e-5)).item())
if (it + 1) % 64 == 0:
t = time.time() - epoch_start
if args.backbone == 'ConvMLP':
lr_log = [pg['lr'] for pg in optim[1].param_groups]
lr_log = sum(lr_log) / len(lr_log)
else:
lr_log = [pg['lr'] for pg in optim.param_groups]
lr_log = sum(lr_log) / len(lr_log)
logger.info("{}-x{}-s{}, {} | epoch:{}, iter: {}. loss_u: {:.3f}. loss_x: {:.3f}. "
"n_correct_u: {:.2f}/{:.2f}. n_correct_u_all: {:.2f}. guess_recall: {:.2f}. Mask:{:.3f}. LR: {:.6f}. Time: {:.2f}".format(
args.dataset, args.n_labeled, args.seed, args.exp_dir, epoch, it + 1, loss_u_meter.avg, loss_x_meter.avg,
n_correct_u_lbs_meter.avg, n_strong_aug_meter.avg, n_correct_u_lbs_all_meter.avg, guess_recall.avg,
mask_meter.avg, lr_log, t))
epoch_start = time.time()
if n_strong_aug_meter.avg == 0: # For debug
n_strong_aug_meter.avg += 1
return loss_x_meter.avg, loss_u_meter.avg, mask_meter.avg, \
n_correct_u_lbs_meter.avg/n_strong_aug_meter.avg, \
n_correct_u_lbs_all_meter.avg/lbs_u_real.shape[0], guess_recall.avg, \
prob_list, l_probs_list
def evaluate(model, ema_model, dataloader, criterion, args=None, each_class_acc=False):
if args.backbone == 'ConvMLP':
model[0].eval()
model[1].eval()
conv_top1_meter = AverageMeter()
conv_ema_top1_meter = AverageMeter()
mlp_top1_meter = AverageMeter()
mlp_ema_top1_meter = AverageMeter()
outGT = torch.FloatTensor().cuda()
conv_outPRED = torch.FloatTensor().cuda()
mlp_outPRED = torch.FloatTensor().cuda()
else:
model.eval()
top1_meter = AverageMeter()
ema_top1_meter = AverageMeter()
mAP_meter = AverageMeter()
ema_mAP_meter = AverageMeter()
with torch.no_grad():
for ims, lbs in dataloader:
ims = ims.cuda()
lbs = lbs.cuda()
if args.backbone == 'ConvMLP':
if args.ConvMlp_fusion:
logits, side_features_mlp = model(ims)
else:
logits_conv = model[0](ims)
logits_mlp = model[1](ims)
scores_conv = torch.softmax(logits_conv, dim=1)
scores_mlp = torch.softmax(logits_mlp, dim=1)
if each_class_acc == True:
scores = scores_mlp
pred = np.argmax(scores.cpu().numpy(),1)
class_acc_list = []
for ii in range(10):
tmp_label = lbs.cpu().numpy() # lbs.size=[64], range:(0-9)
for iter, kk in enumerate(tmp_label): # np.argwhere(lbs.cpu().numpy()==ii)
if kk != ii:
tmp_label[iter] = -1
class_acc_list.append((pred == tmp_label).sum().item() / ((lbs==ii).sum().item()+1e-5))
top1_conv, top5_conv = accuracy(scores_conv, lbs, (1, 5))
conv_top1_meter.update(top1_conv.item())
top1_mlp, top5_mlp = accuracy(scores_mlp, lbs, (1, 5))
mlp_top1_meter.update(top1_mlp.item())
outGT = torch.cat((outGT, lbs.detach()), 0)
conv_outPRED = torch.cat((conv_outPRED, logits_conv.detach()), 0)
mlp_outPRED = torch.cat((mlp_outPRED, logits_mlp.detach()), 0)
else:
logits = model(ims)
scores = torch.softmax(logits, dim=1)
if each_class_acc == True:
pred = np.argmax(scores.cpu().numpy(),1)
class_acc_list = []
for ii in range(10):
tmp_label = lbs.cpu().numpy() # lbs.size=[64], range:(0-9)
for iter, kk in enumerate(tmp_label): # np.argwhere(lbs.cpu().numpy()==ii)
if kk != ii:
tmp_label[iter] = -1
class_acc_list.append((pred == tmp_label).sum().item() / ((lbs==ii).sum().item()+1e-5))
top1, top5 = accuracy(scores, lbs, (1, 5))
top1_meter.update(top1.item())
mAP_score = compute_mAP(scores, lbs)
mAP_meter.update(mAP_score)
if ema_model is not None:
if args.backbone == 'ConvMLP':
if args.ConvMlp_fusion:
logits, side_features_mlp = ema_model(ims)
else:
logits_conv = ema_model[0](ims)
logits_mlp = ema_model[1](ims)
scores_conv = torch.softmax(logits_conv, dim=1)
scores_mlp = torch.softmax(logits_mlp, dim=1)
top1_conv, top5_conv = accuracy(scores_conv, lbs, (1, 5))
conv_ema_top1_meter.update(top1_conv.item())
top1_mlp, top5_mlp = accuracy(scores_mlp, lbs, (1, 5))
mlp_ema_top1_meter.update(top1_mlp.item())
else:
logits = ema_model(ims)
scores = torch.softmax(logits, dim=1)
top1, top5 = accuracy(scores, lbs, (1, 5))
ema_top1_meter.update(top1.item())
ema_mAP_meter.update(mAP_score)
if args.backbone == 'ConvMLP':
conv_outPRED = torch.argmax(conv_outPRED, dim=1).cpu().data.numpy()
mlp_outPRED = torch.argmax(mlp_outPRED, dim=1).cpu().data.numpy()
conv_acc = accuracy_score(outGT.cpu().data.numpy(), conv_outPRED)
conv_mcr = mean_class_recall(outGT.cpu().data.numpy(), conv_outPRED)
mlp_acc = accuracy_score(outGT.cpu().data.numpy(), mlp_outPRED)
mlp_mcr = mean_class_recall(outGT.cpu().data.numpy(), mlp_outPRED)
if each_class_acc == True:
if args.backbone == 'ConvMLP':
return conv_top1_meter.avg, conv_ema_top1_meter.avg, mlp_top1_meter.avg, mlp_ema_top1_meter.avg, class_acc_list, conv_acc, conv_mcr, mlp_acc, mlp_mcr
else:
return top1_meter.avg, ema_top1_meter.avg, mAP_meter.avg, ema_mAP_meter.avg, class_acc_list
else:
return top1_meter.avg, ema_top1_meter.avg
def main():
parser = argparse.ArgumentParser(description='Model Training')
parser.add_argument('--root', default='/home/qsyang2/codes/ssl/datasets', type=str, help='dataset directory')
parser.add_argument('--backbone', type=str, default='WideResnet',
help='name of used backbone')
parser.add_argument('--wresnet-k', default=2, type=int,
help='width factor of wide resnet')
parser.add_argument('--wresnet-n', default=28, type=int,
help='depth of wide resnet')
parser.add_argument('--pre-trained', default=True, type=ast.literal_eval, help='use ImageNet pre-trained parameters')
parser.add_argument('--dataset', type=str, default='ISIC',
help='number of classes in dataset')
parser.add_argument('--n-classes', type=int, default=10,
help='number of classes in dataset')
parser.add_argument('--n-labeled', type=int, default=40,
help='number of labeled samples for training')
parser.add_argument('--n-epoches', type=int, default=1024,
help='number of training epoches')
parser.add_argument('--batchsize', type=int, default=64,
help='train batch size of labeled samples')
parser.add_argument('--mu', type=int, default=7,
help='factor of train batch size of unlabeled samples')
parser.add_argument('--eval-ema', default=True, help='whether to use ema model for evaluation')
parser.add_argument('--ema-m', type=float, default=0.999)
parser.add_argument('--n-imgs-per-epoch', type=int, default=3560, #64 * 1024,
help='number of training images for each epoch')
parser.add_argument('--lam-u', type=float, default=1.,
help='coefficient of unlabeled loss')
parser.add_argument('--lr', type=float, default=1e-3, # 0.03
help='learning rate for training')
parser.add_argument('--weight-decay', type=float, default=5e-4,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum for optimizer')
parser.add_argument('--seed', type=int, default=1,
help='seed for random behaviors, no seed if negtive')
parser.add_argument('--DA', default=True, help='use distribution alignment')
parser.add_argument('--thr', type=float, default=0.95, # threshold for hard-pseudo label
help='pseudo label threshold')
parser.add_argument('--exp-dir', default='FixMatch', type=str, help='experiment directory')
parser.add_argument('--checkpoint', default='', type=str, help='use pretrained model')
parser.add_argument('--gpu', default='0', type=str, required=True,
help='Supprot one GPU & multiple GPUs.')
parser.add_argument('--local_rank', type=int, default=-1, help='node rank for distributed training')
parser.add_argument('--aug-type', type=str, default='RA',
help='type of used augmentation techniques') #['RA', 'CTA']
parser.add_argument('--noisy-rate', default=0, type=float, help='ratio of noisy labels in our CIFAR-10')
parser.add_argument('--standard-DA', default=False, type=ast.literal_eval) #bool
parser.add_argument('--DA-T', default=0.5, type=float, help='temperature factor for sharpening of standard_DA')
parser.add_argument('--long-tail', default=False, type=ast.literal_eval) #bool
parser.add_argument('--analysis', default=True, type=ast.literal_eval) #bool
parser.add_argument('--setting', default='fixmatch_base', type=str, help='setting message for saving logs')
parser.add_argument('--mean-teacher', default=False, type=ast.literal_eval) #bool
parser.add_argument('--dynamic-ema', default=False, type=ast.literal_eval) #bool
parser.add_argument('--ema-step', default=1, type=int, help='step duration to updating ema model')
parser.add_argument('--image-size', type=int, default=112, help='input size') # [112, 128]
parser.add_argument('--patch-size', type=int, default=16, help='patch size')
parser.add_argument('--dim', type=int, default=512, help='dim')
parser.add_argument('--depth', type=int, default=12, help='depth')
parser.add_argument('--optimizer', type=str, default='sgd', help='optimizer') # [sgd, lamb]
parser.add_argument('--ConvMlp-fusion', default=False, type=ast.literal_eval) #bool
parser.add_argument('--MLP-ckpt', default='/home/qsyang2/codes/ssl/ours_medical/ckpt/MLP/imagenet21k_Mixer-B_16.npz', type=str) # Pre-train model for MLP
parser.add_argument('--mlp-lr', type=float, default=1e-3, help='learning rate for training') # 1e-3
parser.add_argument('--mlp-weight-decay', type=float, default=0.0, help='weight decay') # 0.0
parser.add_argument('--num-blocks', type=int, default=4, help='the number of MLP blocks') # 0.0
parser.add_argument('--cnn-frozen', type=int, default=0, help='the number of frozen CNN blocks') # 0.0
parser.add_argument('--mlp-frozen', type=int, default=0, help='the number of frozen MLP blocks') # 0.0
parser.add_argument('--diff-aug', default=False, type=ast.literal_eval) #bool
parser.add_argument('--RFC', default=False, type=ast.literal_eval) #bool
parser.add_argument('--CMH', default=False, type=ast.literal_eval) #bool
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
assert torch.cuda.is_available(), "Currently, we only support CUDA version"
logger, output_dir = setup_default_logging(args)
logger.info(dict(args._get_kwargs()))
tb_logger = tensorboard_logger.Logger(logdir=output_dir, flush_secs=2)
if args.seed > 0:
os.environ['PYTHONHASHSEED'] = str(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
n_iters_per_epoch = args.n_imgs_per_epoch // args.batchsize
n_iters_all = n_iters_per_epoch * args.n_epoches
logger.info("***** Running training *****")
logger.info(f" Task = {args.dataset}@{args.n_labeled}")
layer_bank, gate = None, None
if args.dynamic_ema:
model, criteria_x, criteria_u, ema_model, save_epoch, layer_bank, gate = set_model(args)
else:
model, criteria_x, criteria_u, ema_model, save_epoch = set_model(args)
if args.backbone == 'ConvMLP':
logger.info("Total params: {:.2f}M".format(
(sum(p.numel() for p in model[0].parameters()) + sum(p.numel() for p in model[1].parameters())) / 1e6))
else:
logger.info("Total params: {:.2f}M".format(
sum(p.numel() for p in model.parameters()) / 1e6))
if args.diff_aug:
dltrain_x, dltrain_u = get_train_loader(
args.dataset, args.batchsize, args.mu, n_iters_per_epoch, L=args.n_labeled, root=args.root, method='mlp', aug_type=args.aug_type, seed=args.seed, noisy_rate=args.noisy_rate)
else:
dltrain_x, dltrain_u = get_train_loader(
args.dataset, args.batchsize, args.mu, n_iters_per_epoch, L=args.n_labeled, root=args.root, method='fixmatch', aug_type=args.aug_type, seed=args.seed, noisy_rate=args.noisy_rate)
dlval = get_val_loader(dataset=args.dataset, batch_size=64, num_workers=2, root=args.root, aug_type=args.aug_type, seed=args.seed)
if args.backbone == 'ConvMLP':
conv_wd_params, conv_non_wd_params = [], []
mlp_wd_params, mlp_non_wd_params = [], []
for name, param in model[0].named_parameters():
if args.cnn_frozen > 0:
if name.split('.')[0] == 'block' and int(name.split('.')[1][-1]) < 4-int(args.cnn_frozen) or name.split('.')[0] == 'input_layer':
param.requires_grad = False
else:
if 'bn' in name:
conv_non_wd_params.append(param)
else:
conv_wd_params.append(param)
for name, param in model[1].named_parameters():
if args.mlp_frozen > 0:
if name.split('.')[0] == 'MixerBlock' and int(name.split('.')[1]) < args.num_blocks-int(args.mlp_frozen) or name == 'stem.weight':
param.requires_grad = False
else:
if 'bn' in name:
mlp_non_wd_params.append(param)
else:
mlp_wd_params.append(param)
conv_param_list = [
{'params': conv_wd_params}, {'params': conv_non_wd_params, 'weight_decay': 0}]
mlp_param_list = [
{'params': mlp_wd_params}, {'params': mlp_non_wd_params, 'weight_decay': 0}]
else:
wd_params, non_wd_params = [], []
for name, param in model.named_parameters():
if 'bn' in name:
non_wd_params.append(param)
else:
wd_params.append(param)
param_list = [
{'params': wd_params}, {'params': non_wd_params, 'weight_decay': 0}]
if args.checkpoint != '':
checkpoint = torch.load(args.checkpoint)
optim = torch.optim.SGD(param_list, lr=checkpoint['optim_dict']['param_groups'][0]['lr'])
optim.load_state_dict(checkpoint['optim_dict'])
lr_schdlr = WarmupCosineLrScheduler(optim, n_iters_all, warmup_iter=0, last_epoch=n_iters_per_epoch*checkpoint['epoch']) # n_iters_all=1024**2
else:
if args.backbone == 'ConvMLP':
optim_conv = torch.optim.SGD(conv_param_list, lr=args.lr, weight_decay=args.weight_decay, # DenseNet: lr=0.03, decay=5e-4
momentum=args.momentum, nesterov=True)
lr_schdlr_conv = WarmupCosineLrScheduler(optim_conv, n_iters_all, warmup_iter=0)
optim_mlp = torch.optim.SGD(mlp_param_list, lr=args.mlp_lr, weight_decay=args.mlp_weight_decay, # DenseNet: lr=0.03, decay=5e-4 # For MLP-Mixer
momentum=args.momentum, nesterov=True)
lr_schdlr_mlp = WarmupCosineLrScheduler(optim_mlp, n_iters_all, warmup_iter=0) # For MLP-Mixer
optim = [optim_conv, optim_mlp]
lr_schdlr = [lr_schdlr_conv, lr_schdlr_mlp]
else:
optim = torch.optim.SGD(param_list, lr=args.lr, weight_decay=args.weight_decay, # DenseNet: lr=0.03, decay=5e-4
momentum=args.momentum, nesterov=True)
lr_schdlr = WarmupCosineLrScheduler(optim, n_iters_all, warmup_iter=0)
matchnet, discriminator_img = None, None
d_img_optim, d_match_optim = None, None
example_stats = {}
prob_list = []
l_probs_list = []
prob_list_ema = []
train_args = dict(
model=model,
ema_model=ema_model,
layer_bank=layer_bank,
gate=gate,
matchnet=matchnet,
discriminator_img=discriminator_img,
criteria_x=criteria_x,
criteria_u=criteria_u,
optim=optim,
d_img_optim=d_img_optim,
d_match_optim=d_match_optim,
lr_schdlr=lr_schdlr,
dltrain_x=dltrain_x,
dltrain_u=dltrain_u,
args=args,
n_iters=n_iters_per_epoch,
logger=logger,
prob_list=prob_list,
l_probs_list=l_probs_list,
prob_list_ema=prob_list_ema,
example_stats=example_stats
)
best_acc = -1
best_epoch = 0
global iters
iters = 0
logger.info('-----------start training--------------')
for epoch in range(args.n_epoches):
if args.checkpoint != '':
epoch = save_epoch
loss_x, loss_u, mask_mean, guess_label_acc, guess_label_all_acc, guess_label_recall, prob_list, l_probs_list = train_one_epoch(epoch, **train_args)
if (epoch < 200 and epoch % 20 == 0 and epoch != 0) or (epoch > 200 and epoch % 50 == 0):
if 'MLP' not in args.backbone:
visualizaion(model, ema_model, dltrain_x, dltrain_u, epoch, output_dir)
if args.backbone == 'ConvMLP':
conv_top1, conv_ema_top1, mlp_top1, mlp_ema_top1, class_acc, conv_acc, conv_mcr, mlp_acc, mlp_mcr = evaluate(model, ema_model, dlval, criteria_x, args, each_class_acc=True) # MLP
top1, ema_top1 = mlp_top1, mlp_ema_top1
else:
top1, ema_top1, mAP, ema_mAP, class_acc = evaluate(model, ema_model, dlval, criteria_x, args, each_class_acc=True)
tb_logger.log_value('loss_x', loss_x, epoch)
tb_logger.log_value('loss_u', loss_u, epoch)
tb_logger.log_value('guess_label_acc', guess_label_acc, epoch)
tb_logger.log_value('guess_label_all_acc', guess_label_all_acc, epoch)
tb_logger.log_value('guess_label_recall', guess_label_recall, epoch)
if args.backbone == 'ConvMLP':
tb_logger.log_value('conv_test_acc', conv_top1, epoch)
tb_logger.log_value('conv_test_ema_acc', conv_ema_top1, epoch)
tb_logger.log_value('mlp_test_acc', mlp_top1, epoch)
tb_logger.log_value('mlp_test_ema_acc', mlp_ema_top1, epoch)
tb_logger.log_value('conv_acc', conv_acc, epoch)
tb_logger.log_value('conv_mcr', conv_mcr, epoch)
tb_logger.log_value('mlp_acc', mlp_acc, epoch)
tb_logger.log_value('mlp_mcr', mlp_mcr, epoch)
else:
tb_logger.log_value('test_acc', top1, epoch)
tb_logger.log_value('test_ema_acc', ema_top1, epoch)
tb_logger.log_value('test_mAP', mAP, epoch)
tb_logger.log_value('test_ema_mAP', ema_mAP, epoch)
tb_logger.log_value('mask', mask_mean, epoch) # len(mask)=ul_bs, 0 or 1 value; mask=1 if p>0.95.
tb_logger.log_value('class1_acc', class_acc[0], epoch)
tb_logger.log_value('class2_acc', class_acc[1], epoch)
tb_logger.log_value('class3_acc', class_acc[2], epoch)
tb_logger.log_value('class4_acc', class_acc[3], epoch)
tb_logger.log_value('class5_acc', class_acc[4], epoch)
tb_logger.log_value('class6_acc', class_acc[5], epoch)
tb_logger.log_value('class7_acc', class_acc[6], epoch)
tb_logger.log_value('class8_acc', class_acc[7], epoch)
tb_logger.log_value('class9_acc', class_acc[8], epoch)
tb_logger.log_value('class10_acc', class_acc[9], epoch)
if best_acc < top1:
best_acc = top1
best_epoch = epoch
if (best_acc < top1 and (best_epoch+1) >= 300) or (epoch % 2000 == 0 and 'debug' not in args.setting):
file_name = os.path.join(output_dir, args.dataset+'_'+str(args.n_labeled)+'_'+str(best_acc)+'_epoch_{}.pth'.format(epoch+1))
if args.backbone == 'ConvMLP':
torch.save({
'epoch': epoch,
'state_dict': model[1].state_dict(),
'optim_dict': optim[1].state_dict(),
'lr_schdlr': lr_schdlr[1].state_dict(),
'prob_list': prob_list,
'model': model[1].state_dict(),
'ema_model': ema_model[1].state_dict(),
},
file_name)
else:
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
'optim_dict': optim.state_dict(),
'lr_schdlr': lr_schdlr.state_dict(),
'prob_list': prob_list,
'model': model.state_dict(),
'ema_model': ema_model.state_dict(),
},
file_name)
logger.info("Epoch {}. Acc: {:.4f}. Ema-Acc: {:.4f}. mAP: {:.4f}. Ema-mAP: {:.4f}. best_acc: {:.4f} in epoch{}".
format(epoch, top1, ema_top1, mAP, ema_mAP, best_acc, best_epoch))