forked from QiushiYang/TEAR
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTrain_TEAR.py
666 lines (538 loc) · 29.5 KB
/
Train_TEAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
from __future__ import print_function
import random
import time
import argparse
import os
import sys
import ast
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data.sampler import SubsetRandomSampler
from torch.nn import BatchNorm2d
from WideResNet import WideResnet
from datasets.cifar import get_train_loader, get_val_loader
from utils import accuracy, setup_default_logging, AverageMeter, WarmupCosineLrScheduler, visualizaion
import torchvision.models as models
from torchvision.datasets import ImageFolder
from models.densenet import densenet121
from models.alexnet import AlexNet
from sklearn.metrics.ranking import roc_auc_score
from sklearn.metrics import accuracy_score
import torch_optimizer
import tensorboard_logger
import cv2
from scipy.stats import wasserstein_distance
from torch.nn.parallel import DistributedDataParallel as DDP
log_dir = './logs'
def set_model(args):
if args.backbone == 'WideResnet':
model = WideResnet(n_classes=args.n_classes,k=args.wresnet_k, n=args.wresnet_n, proj=False)
elif args.backbone == 'alexnet':
model = AlexNet(batch_size=args.batchsize, n_classes=args.n_classes, std=0.15, noise=False, data=args.dataset)
elif args.backbone == 'densenet121':
model = densenet121(progress=False, pretrained=args.pre_trained)
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, args.n_classes)
if args.checkpoint != '':
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['state_dict'])
save_epoch = checkpoint['epoch']
print('loaded from checkpoint: %s'%args.checkpoint)
else:
save_epoch = 0
save_optim = None
if len(args.gpu)>1:
torch.distributed.init_process_group(backend="nccl",init_method='tcp://localhost:1001', rank=0, world_size=1)
model.train()
model.cuda()
model = DDP(model, device_ids=[0,1])
else:
model.train()
model.cuda()
criteria_x = nn.CrossEntropyLoss().cuda()
criteria_u = nn.CrossEntropyLoss(reduction='none').cuda()
if args.eval_ema:
if args.backbone == 'WideResnet':
ema_model = WideResnet(n_classes=args.n_classes,k=args.wresnet_k, n=args.wresnet_n, proj=False)
elif args.backbone == 'alexnet':
ema_model = AlexNet(batch_size=args.batchsize, n_classes=args.n_classes, std=0.15, noise=False, data=args.dataset)
elif args.backbone == 'densenet121':
ema_model = densenet121(progress=False, pretrained=args.pre_trained)
num_ftrs = ema_model.classifier.in_features
ema_model.classifier = nn.Linear(num_ftrs, args.n_classes)
for param_q, param_k in zip(model.parameters(), ema_model.parameters()):
param_k.data.copy_(param_q.detach().data) # initialize
param_k.requires_grad = False # not update by gradient for eval_net
ema_model.cuda()
ema_model.eval()
else:
ema_model = None
return model, criteria_x, criteria_u, ema_model, save_epoch
def sigmoid(x, gamma=1, k=1):
return 1 / (k + torch.exp(-x*gamma))
grads = {}
def save_grad(name):
def hook(grad):
grads[name] = grad
return hook
@torch.no_grad()
def ema_model_update(model, ema_model, ema_m):
"""
Momentum update of evaluation model (exponential moving average)
"""
for param_train, param_eval in zip(model.parameters(), ema_model.parameters()):
param_eval.copy_(param_eval * ema_m + param_train.detach() * (1-ema_m))
for buffer_train, buffer_eval in zip(model.buffers(), ema_model.buffers()): # Copy BN params.
buffer_eval.copy_(buffer_train)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def train_one_epoch(epoch,
model,
ema_model,
criteria_x,
criteria_u,
optim,
lr_schdlr,
dltrain_x,
dltrain_u,
args,
n_iters,
logger,
prob_list,
l_probs_list,
prob_list_ema,
example_stats,
):
model.train()
loss_x_meter = AverageMeter()
loss_u_meter = AverageMeter()
n_correct_u_lbs_meter = AverageMeter()
n_strong_aug_meter = AverageMeter()
mask_meter = AverageMeter()
adapl_loss_meter = AverageMeter()
n_correct_u_lbs_all_meter = AverageMeter()
guess_recall = AverageMeter()
ul_true_loss_meter = AverageMeter()
ul_true_select_meter = AverageMeter()
ul_true_unselect_meter = AverageMeter()
adapl_value_select_meter = AverageMeter()
adapl_value_unselect_meter = AverageMeter()
adapl_value_withEntropy_meter = AverageMeter()
adapl_value_ori_withEnt_meter = AverageMeter()
weight_term_meter = AverageMeter()
entropy_select_meter = AverageMeter()
entropy_unselect_meter = AverageMeter()
adapl_value_withEntropy_select_meter = AverageMeter()
adapl_value_withEntropy_unselect_meter = AverageMeter()
param_grad_sum = 0.0
epoch_start = time.time()
dl_x, dl_u = iter(dltrain_x), iter(dltrain_u)
for it in range(n_iters): # Training
ims_x_weak, lbs_x = next(dl_x)
if args.diff_aug:
(ims_u_weak, ims_u_strong, ims_u_strong_mlp), lbs_u_real = next(dl_u)
else:
(ims_u_weak, ims_u_strong), lbs_u_real = next(dl_u)
lbs_x = lbs_x.cuda()
lbs_u_real = lbs_u_real.cuda()
bt = ims_x_weak.size(0)
mu = int(ims_u_weak.size(0) // bt)
imgs = torch.cat([ims_x_weak, ims_u_weak, ims_u_strong], dim=0).cuda()
if args.diff_aug:
imgs_mlp = torch.cat([ims_x_weak, ims_u_weak, ims_u_strong_mlp], dim=0).cuda()
logits, feat = model(imgs,True)
feat_x = feat[:bt]
feat_u_w, feat_u_s = torch.split(feat[bt:], bt * mu)
logits_x = logits[:bt]
logits_u_w, logits_u_s = torch.split(logits[bt:], bt * mu) # only calculate the int-times loss (unlabeled:labeled)
loss_x = criteria_x(logits_x, lbs_x.long()) # CE loss
if args.mean_teacher:
logits, feat = ema_model(imgs,True)
logits_x = logits[:bt]
logits_u_w, _ = torch.split(logits[bt:], bt * mu)
loss_x += criteria_x(logits_x, lbs_x.long())
loss_x /= 2.0
with torch.no_grad():
probs = torch.softmax(logits_u_w, dim=1)
if args.DA:
prob_list.append(probs.mean(0))
if len(prob_list)>32:
prob_list.pop(0)
prob_avg = torch.stack(prob_list,dim=0).mean(0)
probs = probs / prob_avg
if args.standard_DA:
l_probs = torch.softmax(logits_x, dim=1)
l_probs_list.append(l_probs.mean(0))
if len(l_probs_list)>32:
l_probs_list.pop(0)
probs = probs * torch.stack(l_probs_list,dim=0).mean(0)
probs = probs / probs.sum(dim=1, keepdim=True)
if args.standard_DA:
# 2. Apply sharpening.
probs = probs ** (1. / args.DA_T) # T=0.5
probs = probs / probs.sum(dim=1, keepdim=True)
scores, lbs_u_guess = torch.max(probs, dim=1)
mask = scores.ge(args.thr).float() ## scores.ge: 1 if scores>=thr; else 0;
ul_true_loss = criteria_x(logits_u_w, lbs_u_real.long())
ul_true_loss_meter.update(ul_true_loss.item())
ul_true_select_loss = (criteria_u(logits_u_s, lbs_u_real)*mask).sum()/(mask.sum()+1e-5)
ul_true_select_meter.update(ul_true_select_loss.item())
ul_true_unselect_loss = (criteria_u(logits_u_s, lbs_u_real)*(1-mask)).sum()/((1-mask).sum()+1e-5)
ul_true_unselect_meter.update(ul_true_unselect_loss.item())
if args.dynamic_ema:
loss_u = (criteria_u(logits_u_s, lbs_u_guess) * mask).mean()
else:
with torch.no_grad():
probs = probs.detach()
loss_u = (criteria_u(logits_u_s, lbs_u_guess) * mask).mean() # CE loss of Unlabelled data
if args.adapl == True:
_ema_scores, _ema_feat = ema_model(imgs, True)
ema_x_scores = _ema_scores[:bt]
ema_u_scores_weak, ema_u_scores_strong = torch.split(_ema_scores[bt:], bt * mu)
ema_x_feat = _ema_feat[:bt]
ema_u_feat_weak, ema_u_feat_strong = torch.split(_ema_feat[bt:], bt * mu)
if args.adapl_use_weak:
ema_u_scores = ema_u_scores_weak ###
ema_u_feat = ema_u_feat_weak ###
if args.adapl_use_strong:
ema_u_scores = ema_u_scores_strong ###
ema_u_feat = ema_u_feat_strong ###
if args.distribution_adapl:
_dist_mask = scores.ge(args.thr_dist).float()
lbs_x_guess = torch.softmax(logits_x, dim=1)
_scores_x, lbs_x_guess = torch.max(lbs_x_guess, dim=1)
mask_x = _scores_x.ge(args.thr_dist).float()
label_joint = torch.cat([lbs_x_guess, lbs_u_guess],0) # L+UL label/pred
feat_joint = torch.cat([feat_x, feat_u_w],0)
ema_feat_joint = torch.cat([ema_x_feat, ema_u_feat_weak],0)
clf = KMeans(n_clusters=args.n_classes)
clf.fit(feat_u_w.detach().cpu().numpy())
centers = clf.cluster_centers_
kmeans_labels = clf.labels_
probs_x_ema = torch.softmax(ema_x_scores, dim=1)
_scores_x_ema, lbs_x_guess_ema = torch.max(probs_x_ema, dim=1)
mask_eam_x = _scores_x_ema.ge(args.thr_dist).float()
probs_u_ema = torch.softmax(ema_u_scores, dim=1)
if args.DA:
prob_list_ema.append(probs_u_ema.mean(0))
if len(prob_list_ema)>32:
prob_list_ema.pop(0) ## maintain a 32-length squeue prob_list to calculate distributions
prob_avg = torch.stack(prob_list_ema,dim=0).mean(0)
probs_u_ema = probs_u_ema / prob_avg
probs_u_ema = probs_u_ema / probs_u_ema.sum(dim=1, keepdim=True) ## Normalize the prob_list_ema
_scores_ema, lbs_u_guess_ema = torch.max(probs_u_ema, dim=1)
mask_ema = _scores_ema.ge(args.thr_dist).float() ## scores.ge: 1 if scores>=thr; else 0;
mask_dist = torch.cat([mask_x, _dist_mask],0) # mask
mask_ema_dist = torch.cat([mask_eam_x, mask_ema],0)
lbs_joint_guess_ema = torch.cat([lbs_x_guess_ema, lbs_u_guess_ema],0)
prototype_u_w = torch.zeros([args.n_classes, feat_x.shape[-1]])
std_u_k = torch.zeros([args.n_classes, feat_x.shape[-1]])
prototype_u_w_ema = torch.zeros([args.n_classes, feat_x.shape[-1]])
std_u_k_ema = torch.zeros([args.n_classes, feat_x.shape[-1]])
for k in range(args.n_classes):
index = torch.where([torch.tensor(kmeans_labels)==k][0]==True)[0].tolist()
if index != []:
proto_k = torch.mean(feat_joint[index,...],0)
prototype_u_w[k] = proto_k
std_k = torch.mul(torch.transpose((feat_joint[index,...]-proto_k)**2,0,1), mask_dist[index]).sum(1) / (mask_dist[index].sum()+1e-4)
std_k = torch.sqrt(std_k+1e-4)
std_u_k[k] = std_k
index_ema = torch.where([lbs_joint_guess_ema==k][0]==True)[0].tolist()
if index_ema != []:
proto_k_ema = torch.mean(ema_feat_joint[index_ema,...],0)
prototype_u_w_ema[k] = proto_k_ema
std_k_ema = torch.mul(torch.transpose((ema_feat_joint[index_ema,...]-proto_k_ema)**2,0,1), mask_ema_dist[index_ema]).sum(1) / (mask_ema_dist[index_ema].sum()+1e-4)
std_k_ema = torch.sqrt(std_k_ema+1e-4)
std_u_k_ema[k] = std_k_ema
cov_u = 1 / (prototype_u_w.shape[0]-1) * (prototype_u_w-prototype_u_w.mean(1).unsqueeze(-1)) @ (prototype_u_w-prototype_u_w.mean(1).unsqueeze(-1)).transpose(-1,-2)
cov_u_ema = 1 / (prototype_u_w_ema.shape[0]-1) * (prototype_u_w_ema-prototype_u_w_ema.mean(1).unsqueeze(-1)) @ (prototype_u_w_ema-prototype_u_w_ema.mean(1).unsqueeze(-1)).transpose(-1,-2)
loss_dist_proto = torch.tensor([0.0]).cuda()
loss_dist_std = torch.tensor([0.0]).cuda()
num_c = 0
_num_c = 0
for k in range(args.n_classes):
if prototype_u_w[k,...].mean() != 0 and prototype_u_w_ema.mean() != 0:
loss_dist_proto += 1-(prototype_u_w[k,...]*prototype_u_w_ema[k,...]).sum()/(torch.norm(prototype_u_w[k,...])*torch.norm(prototype_u_w_ema[k,...])+1e-4) # Cosine Similarity
diff_std = ((std_u_k[k,...] - std_u_k_ema[k,...])**2).mean()
if std_u_k[k,...].mean()>2*std_u_k_ema[k,...].mean() or std_u_k_ema[k,...].mean()>2*std_u_k[k,...].mean():
loss_dist_std += 0.0
else:
loss_dist_std += diff_std
_num_c += 1
cov_u[k,k] = 1.0
cov_u_ema[k,k] = 1.0
else:
cov_u[k,:] = 0.0
cov_u[:,k] = 0.0
cov_u[k,k] = 1.0
cov_u_ema[k,:] = 0.0
cov_u_ema[:,k] = 0.0
cov_u_ema[k,k] = 1.0
num_c += 1
if _num_c != 0:
loss_dist_proto /= _num_c #num_c #args.n_classes
loss_dist_std /= _num_c #num_c #args.n_classes
else:
loss_dist_proto = torch.tensor([0.0]).cuda()
loss_dist_cov = ((cov_u - torch.eye(args.n_classes))**2).sum() / args.n_classes
loss_dist_cov_ema = ((cov_u_ema - torch.eye(args.n_classes))**2).sum() / args.n_classes
if it % 50 == 0: # 50
logger.info("loss_dist_proto: {:.6f}. ".format(loss_dist_proto.item()))
loss_distribution = loss_dist_proto
if it == 1 and args.analysis == True:
logger.info("GT loss: ")
logger.info(list(((criteria_u(logits_u_s, lbs_u_real)).cpu().detach().numpy())))
logger.info("Top-1 Prob: ")
logger.info(list(scores.cpu().detach().numpy()))
logger.info("Prediction class: ")
logger.info(list(lbs_u_guess.cpu().detach().numpy()))
logger.info("Prediction prob: ")
logger.info(list([probs[i,j].cpu().detach().item() for i,j in enumerate(lbs_u_guess)])[:10])
logger.info("Mask: ")
logger.info(list(mask.cpu().detach().numpy()))
logger.info("Label: ")
logger.info(list(lbs_u_real.cpu().detach().numpy()))
if args.adapl == True:
adapl_value_select = (torch.tensor(adapl_ul)*mask).sum()/(mask.sum()+1e-5)
adapl_value_select_meter.update(adapl_value_select.item())
adapl_value_unselect = (torch.tensor(adapl_ul)*(1-mask)).sum()/((1-mask).sum()+1e-5)
adapl_value_unselect_meter.update(adapl_value_unselect.item())
if args.distribution_adapl:
loss = loss_x + args.lam_u * loss_u + loss_distribution*args.lam_dist
optim.zero_grad()
loss.backward()
nn.utils.clip_grad_value_(model.parameters(), clip_value=1.0)
optim.step()
lr_schdlr.step()
if it % args.ema_step == 0:
if args.eval_ema:
with torch.no_grad():
ema_model_update(model, ema_model, args.ema_m)
adapl_loss_meter.update(0.0)
loss_x_meter.update(loss_x.item())
loss_u_meter.update(loss_u.item())
mask_meter.update(mask.mean().item())
corr_u_lb = (lbs_u_guess == lbs_u_real).float() * mask
n_correct_u_lbs_meter.update(corr_u_lb.sum().item())
n_strong_aug_meter.update(mask.sum().item())
corr_u_lb_all = (lbs_u_guess == lbs_u_real).float()
n_correct_u_lbs_all_meter.update(corr_u_lb_all.sum().item())
guess_recall.update((corr_u_lb.sum()/(corr_u_lb_all.sum()+1e-5)).item())
if (it + 1) % 64 == 0:
t = time.time() - epoch_start
lr_log = [pg['lr'] for pg in optim.param_groups]
lr_log = sum(lr_log) / len(lr_log)
logger.info("{}-x{}-s{}, {} | epoch:{}, iter: {}. loss_u: {:.3f}. loss_x: {:.3f}. "
"n_correct_u: {:.2f}/{:.2f}. n_correct_u_all: {:.2f}. guess_recall: {:.2f}. Mask:{:.3f}. LR: {:.6f}. Time: {:.2f}".format(
args.dataset, args.n_labeled, args.seed, args.exp_dir, epoch, it + 1, loss_u_meter.avg, loss_x_meter.avg,
n_correct_u_lbs_meter.avg, n_strong_aug_meter.avg, n_correct_u_lbs_all_meter.avg, guess_recall.avg,
mask_meter.avg, lr_log, t))
epoch_start = time.time()
return loss_x_meter.avg, loss_u_meter.avg, mask_meter.avg, \
n_correct_u_lbs_meter.avg/n_strong_aug_meter.avg, \
n_correct_u_lbs_all_meter.avg/lbs_u_real.shape[0], guess_recall.avg, \
prob_list, l_probs_list
def evaluate(model, ema_model, dataloader, criterion, args=None, each_class_acc=False):
model.eval()
top1_meter = AverageMeter()
ema_top1_meter = AverageMeter()
with torch.no_grad():
for ims, lbs in dataloader:
ims = ims.cuda()
lbs = lbs.cuda()
logits = model(ims)
scores = torch.softmax(logits, dim=1)
if each_class_acc == True:
pred = np.argmax(scores.cpu().numpy(),1)
class_acc_list = []
for ii in range(10):
tmp_label = lbs.cpu().numpy() # lbs.size=[64], range:(0-9)
for iter, kk in enumerate(tmp_label): # np.argwhere(lbs.cpu().numpy()==ii)
if kk != ii:
tmp_label[iter] = -1
class_acc_list.append((pred == tmp_label).sum().item() / ((lbs==ii).sum().item()+1e-5))
top1, top5 = accuracy(scores, lbs, (1, 5))
top1_meter.update(top1.item())
if ema_model is not None:
logits = ema_model(ims)
scores = torch.softmax(logits, dim=1)
top1, top5 = accuracy(scores, lbs, (1, 5))
ema_top1_meter.update(top1.item())
if each_class_acc == True:
return top1_meter.avg, ema_top1_meter.avg, class_acc_list
else:
return top1_meter.avg, ema_top1_meter.avg
def main():
parser = argparse.ArgumentParser(description='Semi-supervised Training')
parser.add_argument('--root', default='/home/qsyang2/codes/ssl/datasets', type=str, help='dataset directory')
parser.add_argument('--backbone', type=str, default='alexnet ', # 'WideResnet', 'resnet18', 'resnet50'
help='name of used backbone')
parser.add_argument('--wresnet-k', default=2, type=int,
help='width factor of wide resnet')
parser.add_argument('--wresnet-n', default=28, type=int,
help='depth of wide resnet')
parser.add_argument('--pre-trained', default=True, type=ast.literal_eval, help='use ImageNet pre-trained parameters')
parser.add_argument('--dataset', type=str, default='isic2018 ',
help='number of classes in dataset')
parser.add_argument('--n-classes', type=int, default=7,
help='number of classes in dataset')
parser.add_argument('--n-labeled', type=int, default=350,
help='number of labeled samples for training')
parser.add_argument('--n-epoches', type=int, default=256,
help='number of training epoches')
parser.add_argument('--batchsize', type=int, default=64,
help='train batch size of labeled samples')
parser.add_argument('--mu', type=int, default=7, #### ratio of unlabelled/labelled data
help='factor of train batch size of unlabeled samples')
parser.add_argument('--eval-ema', default=True, help='whether to use ema model for evaluation')
parser.add_argument('--ema-m', type=float, default=0.999)
parser.add_argument('--n-imgs-per-epoch', type=int, default=3560, #64 * 1024,
help='number of training images for each epoch')
parser.add_argument('--lam-u', type=float, default=1.,
help='coefficient of unlabeled loss')
parser.add_argument('--lr', type=float, default=1e-3, # 0.03
help='learning rate for training')
parser.add_argument('--weight-decay', type=float, default=5e-4,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum for optimizer')
parser.add_argument('--seed', type=int, default=1,
help='seed for random behaviors, no seed if negtive')
parser.add_argument('--DA', default=True, help='use distribution alignment')
parser.add_argument('--thr', type=float, default=0.95, # threshold for hard-pseudo label
help='pseudo label threshold')
parser.add_argument('--exp-dir', default='FixMatch', type=str, help='experiment directory')
parser.add_argument('--checkpoint', default='', type=str, help='use pretrained model')
parser.add_argument('--gpu', default='0', type=str, required=True,
help='Supprot one GPU & multiple GPUs.')
parser.add_argument('--local_rank', type=int, default=-1, help='node rank for distributed training')
parser.add_argument('--aug-type', type=str, default='RA',
help='type of used augmentation techniques') #['RA', 'CTA']
# =========================================================================================================
parser.add_argument('--adapl', default=False, type=ast.literal_eval) #bool
parser.add_argument('--adapl-WEIGHT', default=0.1, type=float, help='weight of adapl loss')
parser.add_argument('--adapl-dist', choices=['mse','kl','emd'], default='mse', type=str, help='distance metric for two distributions')
parser.add_argument('--Ent', default=False, type=ast.literal_eval) #bool
parser.add_argument('--gamma', default=1, type=int, help='temperature factor for sigmoid re-weight term') #[1,4]
parser.add_argument('--adapl-use-weak', default=False, type=ast.literal_eval) #bool
parser.add_argument('--adapl-use-strong', default=False, type=ast.literal_eval) #bool
parser.add_argument('--grad-adapl', default=False, type=ast.literal_eval) #bool
parser.add_argument('--min-weight', type=float, default=0.5, help='min weight value')
parser.add_argument('--label-smooth', default=False, type=ast.literal_eval) #bool
parser.add_argument('--Corr-upperbound', default=False, type=ast.literal_eval) #bool
parser.add_argument('--distribution-adapl', default=False, type=ast.literal_eval) #bool
parser.add_argument('--lam-dist', type=float, default=0.1, help='coefficient of distribution-adapl loss')
parser.add_argument('--thr-dist', type=float, default=0.8, help='distribution examples threshold') # threshold for hard-pseudo label
parser.add_argument('--standard-DA', default=False, type=ast.literal_eval) #bool
parser.add_argument('--DA-T', default=0.5, type=float, help='temperature factor for sharpening of standard_DA')
parser.add_argument('--analysis', default=True, type=ast.literal_eval) #bool
parser.add_argument('--setting', default='fixmatch_base', type=str, help='setting message for saving logs')
parser.add_argument('--mean-teacher', default=False, type=ast.literal_eval) #bool
# ==========================================================================================================
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
assert torch.cuda.is_available(), "Currently, we only support CUDA version"
logger, output_dir = setup_default_logging(args)
logger.info(dict(args._get_kwargs()))
tb_logger = tensorboard_logger.Logger(logdir=output_dir, flush_secs=2)
if args.seed > 0:
os.environ['PYTHONHASHSEED'] = str(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
n_iters_per_epoch = args.n_imgs_per_epoch // args.batchsize
n_iters_all = n_iters_per_epoch * args.n_epoches
logger.info("***** Running training *****")
logger.info(f" Task = {args.dataset}@{args.n_labeled}")
model, criteria_x, criteria_u, ema_model, save_epoch = set_model(args)
logger.info("Total params: {:.2f}M".format(
sum(p.numel() for p in model.parameters()) / 1e6))
dltrain_x, dltrain_u = get_train_loader(
args.dataset, args.batchsize, args.mu, n_iters_per_epoch, L=args.n_labeled, root=args.root, method='fixmatch', aug_type=args.aug_type, seed=args.seed, noisy_rate=args.noisy_rate)
dlval = get_val_loader(dataset=args.dataset, batch_size=64, num_workers=2, root=args.root, aug_type=args.aug_type, seed=args.seed)
wd_params, non_wd_params = [], []
for name, param in model.named_parameters():
if 'bn' in name:
non_wd_params.append(param)
else:
wd_params.append(param)
param_list = [
{'params': wd_params}, {'params': non_wd_params, 'weight_decay': 0}]
if args.checkpoint != '':
checkpoint = torch.load(args.checkpoint)
optim = torch.optim.SGD(param_list, lr=checkpoint['optim_dict']['param_groups'][0]['lr'])
optim.load_state_dict(checkpoint['optim_dict'])
lr_schdlr = WarmupCosineLrScheduler(optim, n_iters_all, warmup_iter=0, last_epoch=n_iters_per_epoch*checkpoint['epoch'])
else:
optim = torch.optim.SGD(param_list, lr=args.lr, weight_decay=args.weight_decay,
momentum=args.momentum, nesterov=True)
lr_schdlr = WarmupCosineLrScheduler(optim, n_iters_all, warmup_iter=0)
prob_list = []
l_probs_list = []
prob_list_ema = []
train_args = dict(
model=model,
ema_model=ema_model,
criteria_x=criteria_x,
criteria_u=criteria_u,
optim=optim,
lr_schdlr=lr_schdlr,
dltrain_x=dltrain_x,
dltrain_u=dltrain_u,
args=args,
n_iters=n_iters_per_epoch,
logger=logger,
prob_list=prob_list,
l_probs_list=l_probs_list,
prob_list_ema=prob_list_ema,
example_stats=example_stats
)
best_acc = -1
best_epoch = 0
global iters
iters = 0
logger.info('-----------start training--------------')
for epoch in range(args.n_epoches):
if args.checkpoint != '':
epoch = save_epoch
loss_x, loss_u, mask_mean, guess_label_acc, guess_label_all_acc, guess_label_recall, prob_list, l_probs_list = train_one_epoch(epoch, **train_args)
if (epoch < 200 and epoch % 20 == 0 and epoch != 0) or (epoch > 200 and epoch % 50 == 0):
visualizaion(model, ema_model, dltrain_x, dltrain_u, epoch, output_dir)
top1, ema_top1, class_acc = evaluate(model, ema_model, dlval, criteria_x, args, each_class_acc=True)
tb_logger.log_value('loss_x', loss_x, epoch)
tb_logger.log_value('loss_u', loss_u, epoch)
tb_logger.log_value('guess_label_acc', guess_label_acc, epoch)
tb_logger.log_value('guess_label_all_acc', guess_label_all_acc, epoch)
tb_logger.log_value('guess_label_recall', guess_label_recall, epoch)
tb_logger.log_value('test_acc', top1, epoch)
tb_logger.log_value('test_ema_acc', ema_top1, epoch)
tb_logger.log_value('mask', mask_mean, epoch)
if best_acc < top1:
best_acc = top1
best_epoch = epoch
if (best_acc < top1 and (best_epoch+1) >= 100) or (epoch % 50 == 0 and 'debug' not in args.setting):
file_name = os.path.join(output_dir, args.dataset+'_'+str(args.n_labeled)+'_'+str(best_acc)+'_epoch_{}.pth'.format(epoch+1))
torch.save({
'epoch': epoch,
'state_dict': model.state_dict(),
'optim_dict': optim.state_dict(),
'lr_schdlr': lr_schdlr.state_dict(),
'prob_list': prob_list,
'model': model.state_dict(),
'ema_model': ema_model.state_dict(),
},
file_name)
logger.info("Epoch {}. Acc: {:.4f}. Ema-Acc: {:.4f}. best_acc: {:.4f} in epoch{}".
format(epoch, top1, ema_top1, best_acc, best_epoch))
if __name__ == '__main__':
main()