-
Notifications
You must be signed in to change notification settings - Fork 0
/
map_costs.py
216 lines (175 loc) · 6.22 KB
/
map_costs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 27 11:14:48 2023
@author: Claire Halloran, University of Oxford
This script visualizes the spatial cost of ammonia for each demand center.
Edited on Thu Jul 25 2024
@editor: Alycia Leonard, University of Oxford
Description of edits:
- Fixed up labels (LCOA instead of LCOH)
"""
import geopandas as gpd
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import pandas as pd
hexagons = gpd.read_file('Resources/hex_total_cost.geojson')
demand_excel_path = 'Parameters/demand_parameters.xlsx'
demand_parameters = pd.read_excel(demand_excel_path,
index_col='Demand center',
)
demand_centers = demand_parameters.index
#%% plot LCOA for each hexagon
# update central coordinates for area considered
crs = ccrs.Orthographic(central_longitude = 37.5, central_latitude= 0.0)
for demand_center in demand_centers:
fig = plt.figure(figsize=(10,5))
ax = plt.axes(projection=crs)
ax.set_axis_off()
hexagons.to_crs(crs.proj4_init).plot(
ax=ax,
column = f'{demand_center} trucking production cost',
legend = True,
cmap = 'viridis_r',
legend_kwds={'label':'Production LCOA [euros/kg]'},
missing_kwds={
"color": "lightgrey",
"label": "Missing values",
},
)
ax.set_title(f'{demand_center} trucking production cost')
fig.savefig(f'Resources\\{demand_center} trucking production cost.png', bbox_inches='tight')
fig = plt.figure(figsize=(10,5))
ax = plt.axes(projection=crs)
ax.set_axis_off()
hexagons.to_crs(crs.proj4_init).plot(
ax=ax,
column = f'{demand_center} pipeline production cost',
legend = True,
cmap = 'viridis_r',
legend_kwds={'label':'Production LCOA [euros/kg]'},
missing_kwds={
"color": "lightgrey",
"label": "Missing values",
},
)
ax.set_title(f'{demand_center} pipeline production cost')
fig.savefig(f'Resources\\{demand_center} pipeline production cost.png', bbox_inches='tight')
#%% plot transportation costs
fig = plt.figure(figsize=(10,5))
ax = plt.axes(projection=crs)
ax.set_axis_off()
hexagons[f'{demand_center} total trucking cost'] =\
hexagons[f'{demand_center} trucking transport costs']+hexagons[f'{demand_center} road construction costs']
hexagons.to_crs(crs.proj4_init).plot(
ax=ax,
column = f'{demand_center} total trucking cost',
legend = True,
cmap = 'viridis_r',
legend_kwds={'label':'Trucking cost [euros/kg]'},
missing_kwds={
"color": "lightgrey",
"label": "Missing values",
},
)
ax.set_title(f'{demand_center} trucking transport costs')
fig.savefig(f'Resources\\{demand_center} trucking transport cost.png', bbox_inches='tight')
fig = plt.figure(figsize=(10,5))
ax = plt.axes(projection=crs)
ax.set_axis_off()
hexagons.to_crs(crs.proj4_init).plot(
ax=ax,
column = f'{demand_center} pipeline transport costs',
legend = True,
cmap = 'viridis_r',
legend_kwds={'label':'Pipeline cost [euros/kg]'},
missing_kwds={
"color": "lightgrey",
"label": "Missing values",
},
)
ax.set_title(f'{demand_center} pipeline transport costs')
fig.savefig(f'Resources\\{demand_center} pipeline transport cost.png', bbox_inches='tight')
# %% plot total costs
fig = plt.figure(figsize=(10,5))
ax = plt.axes(projection=crs)
ax.set_axis_off()
hexagons.to_crs(crs.proj4_init).plot(
ax=ax,
column = f'{demand_center} trucking total cost',
legend = True,
cmap = 'viridis_r',
legend_kwds={'label':'LCOA [euros/kg]'},
missing_kwds={
"color": "lightgrey",
"label": "Missing values",
},
)
ax.set_title(f'{demand_center} trucking LCOA')
fig.savefig(f'Resources\\{demand_center} trucking LCOA.png', bbox_inches='tight')
crs = ccrs.Orthographic(central_longitude = 37.5, central_latitude= 0.0)
fig = plt.figure(figsize=(10,5))
ax = plt.axes(projection=crs)
ax.set_axis_off()
hexagons.to_crs(crs.proj4_init).plot(
ax=ax,
column = f'{demand_center} pipeline total cost',
legend = True,
cmap = 'viridis_r',
legend_kwds={'label':'LCOA [euros/kg]'},
missing_kwds={
"color": "lightgrey",
"label": "Missing values",
},
)
ax.set_title(f'{demand_center} pipeline LCOA')
fig.savefig(f'Resources\\{demand_center} pipeline LCOA.png', bbox_inches='tight')
fig = plt.figure(figsize=(10,5))
ax = plt.axes(projection=crs)
ax.set_axis_off()
hexagons.to_crs(crs.proj4_init).plot(
ax=ax,
column = f'{demand_center} lowest cost',
legend = True,
cmap = 'viridis_r',
legend_kwds={'label':'LCOA [euros/kg]'},
missing_kwds={
"color": "lightgrey",
"label": "Missing values",
},
)
ax.set_title(f'{demand_center} LCOA')
fig.savefig(f'Resources\\{demand_center} LCOA.png', bbox_inches='tight')
# %% plot water costs
fig = plt.figure(figsize=(10,5))
ax = plt.axes(projection=crs)
ax.set_axis_off()
hexagons.to_crs(crs.proj4_init).plot(
ax=ax,
column = 'Ocean water costs',
legend = True,
cmap = 'viridis_r',
legend_kwds={'label':'Water cost [euros/kg H2]'},
missing_kwds={
"color": "lightgrey",
"label": "Missing values",
},
)
ax.set_title('Ocean water costs')
fig.savefig(f'Resources\\Ocean water costs.png', bbox_inches='tight')
fig = plt.figure(figsize=(10,5))
ax = plt.axes(projection=crs)
ax.set_axis_off()
hexagons.to_crs(crs.proj4_init).plot(
ax=ax,
column = 'Freshwater costs',
legend = True,
cmap = 'viridis_r',
legend_kwds={'label':'Water cost [euros/kg H2]'},
missing_kwds={
"color": "lightgrey",
"label": "Missing values",
},
)
ax.set_title('Freshwater costs')
fig.savefig(f'Resources\\Freshwater costs.png', bbox_inches='tight')