https://github.com/ClinicalDataScience/datacentric-challenge/blob/main/predict.py There is a output = mt.ResampleToMatch()(prediction[0], reference[None, ...], mode="nearest") line. The shapes of the prediction and reference image: _shape of prediction.shape torch.Size([1, 1, 400, 400, 588]) shape of reference[None, ...] torch.Size([1, 400, 400, 588]) shape of output (prediction[0]) torch.Size([1, 400, 400, 588]) shape of gt torch.Size([400, 400, 588])_ reference.meta['pixdim'][1:4] [2.03642 2.03642 3. ] If I do not use this resampling, since I think there is nothing to resample, : output = prediction[0] then I get the following results: {'dice_score': 0.614188644477715, 'fp_volume': 9.318324703216552, 'fn_volume': 0.6469330902099609}  If I use resampling as specified: output = mt.ResampleToMatch()(prediction[0], reference[None, ...], mode="nearest") results is the following: {'dice_score': 0.0, 'fp_volume': 7.37752543258667, 'fn_volume': 125.01981968307494}  Is this something that expected/normal?