-
Notifications
You must be signed in to change notification settings - Fork 1
/
cifar_model.py
executable file
·208 lines (170 loc) · 7.07 KB
/
cifar_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# based on https://github.com/tensorflow/models/tree/master/resnet
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
class Model(object):
"""ResNet model."""
def __init__(self, restore=None, sess=None, tiny=True, mode='eval'):
"""ResNet constructor.
Args:
mode: One of 'train' and 'eval'.
"""
self.mode = mode
self.tiny = tiny
with tf.variable_scope('model', reuse=tf.AUTO_REUSE):
self._build_model()
if restore:
path = tf.train.latest_checkpoint(restore)
used_vars = [x for x in tf.global_variables() if x.name.startswith('model')]
#other_dict = {x.name[6:-2]:x for x in tf.global_variables() if x.name.startswith('model')}
saver = tf.train.Saver(var_list=used_vars)
saver.restore(sess, path)
def __call__(self, xs):
with tf.variable_scope('model', reuse=tf.AUTO_REUSE):
return self._build_model(xs)
def add_internal_summaries(self):
pass
def _stride_arr(self, stride):
"""Map a stride scalar to the stride array for tf.nn.conv2d."""
return [1, stride, stride, 1]
def _build_model(self, x_input = None):
assert self.mode == 'train' or self.mode == 'eval'
"""Build the core model within the graph."""
with tf.variable_scope('input'):
if x_input == None:
self.x_input = tf.placeholder(
tf.float32,
shape=[None, 32, 32, 3], name='x_input_model')
else:
self.x_input = x_input
self.y_input = tf.placeholder(tf.int64, shape=None, name='y_input_model')
input_standardized = tf.map_fn(lambda img: tf.image.per_image_standardization(img),
self.x_input)
x = self._conv('init_conv', input_standardized, 3, 3, 16, self._stride_arr(1))
strides = [1, 2, 2]
activate_before_residual = [True, False, False]
res_func = self._residual
# Uncomment the following codes to use w28-10 wide residual network.
# It is more memory efficient than very deep residual network and has
# comparably good performance.
# https://arxiv.org/pdf/1605.07146v1.pdf
if self.tiny:
filters = [16, 16, 32, 64]
layers = 2
else:
filters = [16, 160, 320, 640]
layers = 5
# Update hps.num_residual_units to 9
with tf.variable_scope('unit_1_0'):
x = res_func(x, filters[0], filters[1], self._stride_arr(strides[0]),
activate_before_residual[0])
for i in range(1, layers):
with tf.variable_scope('unit_1_%d' % i):
x = res_func(x, filters[1], filters[1], self._stride_arr(1), False)
with tf.variable_scope('unit_2_0'):
x = res_func(x, filters[1], filters[2], self._stride_arr(strides[1]),
activate_before_residual[1])
for i in range(1, layers):
with tf.variable_scope('unit_2_%d' % i):
x = res_func(x, filters[2], filters[2], self._stride_arr(1), False)
with tf.variable_scope('unit_3_0'):
x = res_func(x, filters[2], filters[3], self._stride_arr(strides[2]),
activate_before_residual[2])
for i in range(1, layers):
with tf.variable_scope('unit_3_%d' % i):
x = res_func(x, filters[3], filters[3], self._stride_arr(1), False)
with tf.variable_scope('unit_last'):
x = self._batch_norm('final_bn', x)
x = self._relu(x, 0.1)
x = self._global_avg_pool(x)
with tf.variable_scope('logit'):
self.pre_softmax = self._fully_connected(x, 10)
self.predictions = tf.argmax(self.pre_softmax, 1)
self.correct_prediction = tf.equal(self.predictions, self.y_input)
self.num_correct = tf.reduce_sum(
tf.cast(self.correct_prediction, tf.int64))
self.accuracy = tf.reduce_mean(
tf.cast(self.correct_prediction, tf.float32))
with tf.variable_scope('costs'):
self.y_xent = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=self.pre_softmax, labels=self.y_input)
self.xent = tf.reduce_sum(self.y_xent, name='y_xent')
self.mean_xent = tf.reduce_mean(self.y_xent)
self.weight_decay_loss = self._decay()
return self.pre_softmax
def _batch_norm(self, name, x):
"""Batch normalization."""
with tf.name_scope(name):
return tf.contrib.layers.batch_norm(
inputs=x,
decay=.9,
center=True,
scale=True,
activation_fn=None,
updates_collections=None,
is_training=(self.mode == 'train'))
def _residual(self, x, in_filter, out_filter, stride,
activate_before_residual=False):
"""Residual unit with 2 sub layers."""
if activate_before_residual:
with tf.variable_scope('shared_activation'):
x = self._batch_norm('init_bn', x)
x = self._relu(x, 0.1)
orig_x = x
else:
with tf.variable_scope('residual_only_activation'):
orig_x = x
x = self._batch_norm('init_bn', x)
x = self._relu(x, 0.1)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 3, in_filter, out_filter, stride)
with tf.variable_scope('sub2'):
x = self._batch_norm('bn2', x)
x = self._relu(x, 0.1)
x = self._conv('conv2', x, 3, out_filter, out_filter, [1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if in_filter != out_filter:
orig_x = tf.nn.avg_pool(orig_x, stride, stride, 'VALID')
orig_x = tf.pad(
orig_x, [[0, 0], [0, 0], [0, 0],
[(out_filter-in_filter)//2, (out_filter-in_filter)//2]])
x += orig_x
tf.logging.debug('image after unit %s', x.get_shape())
return x
def _decay(self):
"""L2 weight decay loss."""
costs = []
for var in tf.trainable_variables():
if var.op.name.find('DW') > 0:
costs.append(tf.nn.l2_loss(var))
return tf.add_n(costs)
def _conv(self, name, x, filter_size, in_filters, out_filters, strides):
"""Convolution."""
with tf.variable_scope(name):
n = filter_size * filter_size * out_filters
kernel = tf.get_variable(
'DW', [filter_size, filter_size, in_filters, out_filters],
tf.float32, initializer=tf.random_normal_initializer(
stddev=np.sqrt(2.0/n)))
return tf.nn.conv2d(x, kernel, strides, padding='SAME')
def _relu(self, x, leakiness=0.0):
"""Relu, with optional leaky support."""
return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
def _fully_connected(self, x, out_dim):
"""FullyConnected layer for final output."""
num_non_batch_dimensions = len(x.shape)
prod_non_batch_dimensions = 1
for ii in range(num_non_batch_dimensions - 1):
prod_non_batch_dimensions *= int(x.shape[ii + 1])
x = tf.reshape(x, [tf.shape(x)[0], -1])
w = tf.get_variable(
'DW', [prod_non_batch_dimensions, out_dim],
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
b = tf.get_variable('biases', [out_dim],
initializer=tf.constant_initializer())
return tf.nn.xw_plus_b(x, w, b)
def _global_avg_pool(self, x):
assert x.get_shape().ndims == 4
return tf.reduce_mean(x, [1, 2])