forked from aksakalli/jekyll-doc-theme
-
Notifications
You must be signed in to change notification settings - Fork 3
/
index.html
48 lines (46 loc) · 2.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
layout: default
---
<div class="header-container jumbotron">
<div class="container">
<h1>Temporal Graph Benchmark</h1>
<p>Benchmark datasets for machine learning on temporal graphs, temporal knowledge graphs and temporal heterogeneous graphs.</p>
<p><a class="btn btn-primary btn-lg" href="{{ "/docs/home/" | relative_url }}" role="button">Get Started</a></p>
</div>
</div>
<div class="container">
<div class="row">
<div class="col-md-6">
<h2 class="header-light regular-pad">Temporal Graph Benchmark</h2>
<h6 class="lead">TGB is a collection of challenging and diverse benchmark datasets
for realistic, reproducible, and robust evaluation for machine learning on temporal graphs.
TGB includes both dynamic link and node property prediction tasks and an automated pipeline
from dataset downloading, dataloading, evaluation and submission to the TGB leaderboard.
In TGB 2.0, we also included novel datasets for temporal knowledge graphs and temporal heterogeneous graphs.
TGB is driven by community feedback and suggestions, if you would like to contribute a novel dataset or report any issues,
please <a href="[email protected]">email us</a> or visit our <a href="https://github.com/shenyangHuang/TGB">github</a>.</h6>
</div>
<div class="col-md-6 text-center">
<img src="{{ "/assets/img/TGB_logo.png" | relative_url }}" alt="Jekyll logo" class="img-responsive">
</div>
</div>
<hr>
<div class="row">
<div class="col-sm-4">
<h1 class="text-center"><i class="fa fa-cubes" aria-hidden="true"></i></h1>
<!-- <h1 class="text-center"><img src="{{ "/assets/img/network.png" | relative_url }}" alt="Jekyll logo" class="img-responsive"></h1> -->
<h3 class="text-center">Diverse Datasets</h3>
<h5>TGB provides diverse and realistic datasets, containing millions of nodes, edges and timestamps</h5>
</div>
<div class="col-sm-4">
<h1 class="text-center"><i class="fa fa-cogs" aria-hidden="true"></i></h1>
<h3 class="text-center">Multiple Data Formats</h3>
<h5>TGB datasets are supported as <code>numpy</code> arrays, <code>PyTorch</code> tensors and <code>PyG</code> compatible <code>TemporalData</code> objects</h5>
</div>
<div class="col-sm-4">
<h1 class="text-center"><i class="fa fa-wrench" aria-hidden="true"></i></h1>
<h3 class="text-center">Unified Evaluation</h3>
<h5>TGB provides dataset splits and evaluators for reproducible and standardized evaluation for temporal graphs, temporal knowledge graphs and temporal heterogeneous graphs.</h5>
</div>
</div>
</div>