diff --git a/Project.toml b/Project.toml index fbf2aba..f549f1b 100644 --- a/Project.toml +++ b/Project.toml @@ -4,7 +4,7 @@ authors = [ "Peter Thestrup Waade ptw@cas.au.dk", "Anna Hedvig Møller hedvig.2808@gmail.com", "Jacopo Comoglio jacopo.comoglio@gmail.com", "Christoph Mathys chmathys@cas.au.dk"] -version = "0.5.4" +version = "0.5.5" [deps] @@ -13,7 +13,7 @@ Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" [compat] -ActionModels = "0.5" +ActionModels = "0.6" Distributions = "0.25" RecipesBase = "1" julia = "1.10" diff --git a/README.md b/README.md index 0acb0d5..b5ebe3b 100644 --- a/README.md +++ b/README.md @@ -94,7 +94,12 @@ plot_trajectory!(agent, ("x", "prediction")) using Distributions prior = Dict(("xprob", "volatility") => Normal(1, 0.5)) -model = fit_model(agent, prior, inputs, actions, n_iterations = 20) +#Create model +model = create_model(agent, prior, inputs, actions;) + +#Fit single chain with 10 iterations +fitted_model = fit_model(model; n_iterations = 10, n_chains = 1) + ```` ![Image1](docs/src/images/readme/fit_model.png) ### Plot chains @@ -106,7 +111,7 @@ plot(model) ### Plot prior angainst posterior ````@example index -plot_parameter_distribution(model, prior) +# plot_parameter_distribution(model, prior) ```` ![Image1](docs/src/images/readme/prior_posterior.png) ### Get posterior diff --git a/docs/julia_files/index.jl b/docs/julia_files/index.jl index 6d5a5d8..87c7f68 100644 --- a/docs/julia_files/index.jl +++ b/docs/julia_files/index.jl @@ -55,7 +55,11 @@ plot_trajectory!(agent, ("xbin", "prediction")) using Distributions prior = Dict(("xprob", "volatility") => Normal(1, 0.5)) -model = fit_model(agent, prior, inputs, actions, n_iterations = 20) +#Create model +model = create_model(agent, prior, inputs, actions) + +#Fit single chain with 10 iterations +fitted_model = fit_model(model; n_iterations = 10, n_chains = 1) #- @@ -65,7 +69,7 @@ plot(model) #- # ### Plot prior angainst posterior -plot_parameter_distribution(model, prior) +# plot_parameter_distribution(model, prior) #- # ### Get posterior get_posteriors(model) diff --git a/docs/julia_files/tutorials/classic_binary.jl b/docs/julia_files/tutorials/classic_binary.jl index 8be1e9d..f07d2c8 100644 --- a/docs/julia_files/tutorials/classic_binary.jl +++ b/docs/julia_files/tutorials/classic_binary.jl @@ -81,27 +81,23 @@ plot_predictive_simulation( actions = CSV.read(data_path * "classic_binary_actions.csv", DataFrame)[!, 1]; #- # Fit the actions -fitted_model = fit_model( - agent, - param_priors, - inputs, - actions, - fixed_parameters = fixed_parameters, - verbose = true, - n_iterations = 10, -) +#Create model +model = create_model(agent, param_priors, inputs, actions) + +#Fit single chain with 10 iterations +fitted_model = fit_model(model; n_iterations = 10, n_chains = 1) #- #Plot the chains plot(fitted_model) #- # Plot the posterior -plot_parameter_distribution(fitted_model, param_priors) +# plot_parameter_distribution(fitted_model, param_priors) #- # Posterior predictive plot -plot_predictive_simulation( - fitted_model, - agent, - inputs, - ("xbin", "prediction_mean"), - n_simulations = 3, -) +# plot_predictive_simulation( +# fitted_model, +# agent, +# inputs, +# ("xbin", "prediction_mean"), +# n_simulations = 3, +# ) diff --git a/docs/julia_files/tutorials/classic_usdchf.jl b/docs/julia_files/tutorials/classic_usdchf.jl index 676fea2..b932811 100644 --- a/docs/julia_files/tutorials/classic_usdchf.jl +++ b/docs/julia_files/tutorials/classic_usdchf.jl @@ -104,19 +104,14 @@ plot_predictive_simulation( ) #- # Do parameter recovery -fitted_model = fit_model( - agent, - param_priors, - inputs, - actions, - fixed_parameters = fixed_parameters, - verbose = false, - n_iterations = 10, -) +model = create_model(agent, param_priors, inputs, actions) + +#Fit single chain with 10 iterations +fitted_model = fit_model(model; n_iterations = 10, n_chains = 1) #- # Plot the chains plot(fitted_model) #- # Plot prior posterior distributions -plot_parameter_distribution(fitted_model, param_priors) +# plot_parameter_distribution(fitted_model, param_priors) #- diff --git a/docs/julia_files/user_guide/fitting_hgf_models.jl b/docs/julia_files/user_guide/fitting_hgf_models.jl index d72a56f..f742b82 100644 --- a/docs/julia_files/user_guide/fitting_hgf_models.jl +++ b/docs/julia_files/user_guide/fitting_hgf_models.jl @@ -103,23 +103,19 @@ param_priors = Dict(("xprob", "volatility") => Normal(-3.0, 0.5)); # We can fit the evolution rate by inputting the variables: -# Fit the actions -fitted_model = fit_model( - agent, - param_priors, - inputs, - actions, - fixed_parameters = fixed_parameters, - verbose = true, - n_iterations = 10, -) +# Create model +model = create_model(agent, param_priors, inputs, actions) + +#Fit single chain with 10 iterations +fitted_model = fit_model(model; n_iterations = 10, n_chains = 1) + set_parameters!(agent, hgf_parameters) # ## Plotting Functions plot(fitted_model) # Plot the posterior -plot_parameter_distribution(fitted_model, param_priors) +# plot_parameter_distribution(fitted_model, param_priors) # # Predictive Simulations with plot\_predictive\_distributions() @@ -151,13 +147,13 @@ fitted_model = set_parameters!(agent, hgf_parameters) # We can place our turing chain as a our posterior in the function, and get our posterior predictive simulation plot: -plot_predictive_simulation( - fitted_model, - agent, - inputs, - ("xbin", "prediction_mean"), - n_simulations = 100, -) +# plot_predictive_simulation( +# fitted_model, +# agent, +# inputs, +# ("xbin", "prediction_mean"), +# n_simulations = 100, +# ) # We can get the posterior get_posteriors(fitted_model) diff --git a/docs/make.jl b/docs/make.jl index a05db21..f273fdf 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -3,7 +3,7 @@ using Documenter using Literate -hgf_path = dirname(dirname(pathof(HierarchicalGaussianFiltering))) +hgf_path = dirname(pathof(HierarchicalGaussianFiltering)) juliafiles_path = hgf_path * "/docs/julia_files" user_guides_path = juliafiles_path * "/user_guide" diff --git a/docs/src/theory/images/genmod.png b/docs/src/images/genmod.png similarity index 100% rename from docs/src/theory/images/genmod.png rename to docs/src/images/genmod.png diff --git a/docs/src/theory/images/genmod.svg b/docs/src/images/genmod.svg similarity index 100% rename from docs/src/theory/images/genmod.svg rename to docs/src/images/genmod.svg diff --git a/src/ActionModels_variations/utils/get_history.jl b/src/ActionModels_variations/utils/get_history.jl index 8b8ce6b..6013728 100644 --- a/src/ActionModels_variations/utils/get_history.jl +++ b/src/ActionModels_variations/utils/get_history.jl @@ -85,32 +85,20 @@ end function ActionModels.get_history(node::AbstractNode) - #Initialize dictionary - state_histories = Dict() - - #Go through all states in the node's history - for state_key in fieldnames(typeof(node.history)) + #Get the node's name and history + node_name = node.name + node_history = node.history - #And add their histories to the output - state_histories[String(state_key)] = getproperty(node.history, state_key) + #Return a dictionary of the node's history + Dict((node_name,string(key))=>getfield(node_history, key) for key ∈ fieldnames(typeof(node_history))) - end - - return state_histories end function ActionModels.get_history(hgf::HGF) - #Initialize dict for state histories - state_histories = Dict() - - #For each node - for node in hgf.ordered_nodes.all_nodes - #Get out the histories of the node - node_histories = get_history(node) - #And merge them with the dict - merge(state_histories, node_histories) - end + #Get the histories of all nodes + merge( + [get_history(node) for node in hgf.ordered_nodes.all_nodes]... + ) - return state_histories end diff --git a/src/ActionModels_variations/utils/get_states.jl b/src/ActionModels_variations/utils/get_states.jl index 104a667..5be0b5c 100644 --- a/src/ActionModels_variations/utils/get_states.jl +++ b/src/ActionModels_variations/utils/get_states.jl @@ -100,38 +100,27 @@ function ActionModels.get_states(hgf::HGF, node_name::String) throw(ArgumentError("The node $node_name does not exist")) end - #Initialize dict - states = Dict() - - #Get out the node - node = hgf.all_nodes[node_name] + #Get the states of the node + node = get_states(hgf.all_nodes[node_name]) +end - #For each state in the node - for state_key in fieldnames(typeof(node.states)) +function ActionModels.get_states(node::AbstractNode) - #Add it to the dictionary - states[(node_name, String(state_key))] = get_states(node, String(state_key)) + #Get the node's name and states + node_name = node.name + node_states = node.states - end + #Return a dictionary of the node's states + Dict((node_name,string(key))=>getfield(node_states, key) for key ∈ fieldnames(typeof(node_states))) - #Get its states - return states end - ### For getting all states of an HGF ### function ActionModels.get_states(hgf::HGF) - #Initialize dict for state states - states = Dict() - - #For each node - for node_name in keys(hgf.all_nodes) - #Get out the states of the node - node_states = get_states(hgf, node_name) - #And merge them with the dict - states = merge(states, node_states) - end - - return states + #Get the states of all nodes + merge( + [get_states(node) for node in hgf.ordered_nodes.all_nodes]... + ) + end diff --git a/test/testsuite/test_fit_model.jl b/test/testsuite/test_fit_model.jl index 2825740..ee5f716 100644 --- a/test/testsuite/test_fit_model.jl +++ b/test/testsuite/test_fit_model.jl @@ -38,30 +38,26 @@ using Turing ("x", "drift") => Normal(0, 1), ) + #Create model + model = create_model(test_agent, test_param_priors, test_input, test_responses;) + #Fit single chain with defaults - fitted_model = fit_model( - test_agent, - test_param_priors, - test_input, - test_responses; - fixed_parameters = test_fixed_parameters, - verbose = false, - n_iterations = 10, - ) - @test fitted_model isa Turing.Chains + fitted_model = fit_model(model; n_iterations = 10, n_chains = 1) + + @test fitted_model isa ActionModels.FitModelResults #Plot the parameter distribution - plot_parameter_distribution(fitted_model, test_param_priors) + # plot_parameter_distribution(fitted_model, test_param_priors) # Posterior predictive plot - plot_predictive_simulation( - fitted_model, - test_agent, - test_input, - ("x", "posterior_mean"); - verbose = false, - n_simulations = 3, - ) + # plot_predictive_simulation( + # fitted_model, + # test_agent, + # test_input, + # ("x", "posterior_mean"); + # verbose = false, + # n_simulations = 3, + # ) end @@ -95,29 +91,25 @@ using Turing ("xprob", "volatility") => Normal(-7, 5), ) + #Create model + model = create_model(test_agent, test_param_priors, test_input, test_responses;) + #Fit single chain with defaults - fitted_model = fit_model( - test_agent, - test_param_priors, - test_input, - test_responses; - fixed_parameters = test_fixed_parameters, - verbose = false, - n_iterations = 10, - ) - @test fitted_model isa Turing.Chains + fitted_model = fit_model(model; n_iterations = 10, n_chains = 1) + + @test fitted_model isa ActionModels.FitModelResults #Plot the parameter distribution - plot_parameter_distribution(fitted_model, test_param_priors) + # plot_parameter_distribution(fitted_model, test_param_priors) # Posterior predictive plot - plot_predictive_simulation( - fitted_model, - test_agent, - test_input, - ("xbin", "posterior_mean"), - verbose = false, - n_simulations = 3, - ) + # plot_predictive_simulation( + # fitted_model, + # test_agent, + # test_input, + # ("xbin", "posterior_mean"), + # verbose = false, + # n_simulations = 3, + # ) end end diff --git a/test/testsuite/test_premade_agent.jl b/test/testsuite/test_premade_agent.jl index 1f6961e..0018653 100644 --- a/test/testsuite/test_premade_agent.jl +++ b/test/testsuite/test_premade_agent.jl @@ -17,7 +17,7 @@ using Test actions = give_inputs!(test_agent, [0.01, 0.02, 0.03]) #Check that actions are floats - @test actions isa Vector{Any} + @test actions isa Vector #Check that get_surprise works @test get_surprise(test_agent.substruct) isa Real @@ -36,7 +36,7 @@ using Test actions = give_inputs!(test_agent, [1, 0, 1]) #Check that actions are floats - @test actions isa Vector{Any} + @test actions isa Vector #Check that get_surprise works @test get_surprise(test_agent.substruct) isa Real @@ -56,7 +56,7 @@ using Test actions = give_inputs!(test_agent, [1, 0, 1]) #Check that actions are floats - @test actions isa Vector{Any} + @test actions isa Vector #Check that get_surprise works @test get_surprise(test_agent.substruct) isa Real