diff --git a/docs/Project.toml b/docs/Project.toml index 2809280..160ea0c 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -13,5 +13,6 @@ JET = "c3a54625-cd67-489e-a8e7-0a5a0ff4e31b" JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899" Literate = "98b081ad-f1c9-55d3-8b20-4c87d4299306" Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" +Pluto = "c3e4b0f8-55cb-11ea-2926-15256bba5781" StatsPlots = "f3b207a7-027a-5e70-b257-86293d7955fd" Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0" diff --git a/docs/julia_files/tutorials/sinoid_transform.jl b/docs/julia_files/tutorials/sinoid_transform.jl new file mode 100644 index 0000000..9cd6b57 --- /dev/null +++ b/docs/julia_files/tutorials/sinoid_transform.jl @@ -0,0 +1,186 @@ +### A Pluto.jl notebook ### +# v0.19.45 + +using Markdown +using InteractiveUtils + +# ╔═╡ e47a29a4-38b0-4f19-972a-7c1c3e83c2f7 +using Pkg; +Pkg.activate("../../"); #Activate the docs environment + +# ╔═╡ 5ae02fee-48f1-11ef-209c-539e778f577d +using HierarchicalGaussianFiltering, Distributions, StatsPlots + +# ╔═╡ ff1abe62-b477-4c34-927d-4cc758981d60 +nodes = [ + ContinuousInput(name = "u"), + ContinuousState(name = "x1"), + ContinuousState(name = "x2"), +] + +# ╔═╡ b53c65b6-24fb-4df0-85e8-c94e973f92d1 +sine_transform = NonlinearTransform( + function (x, parameters::Dict) + sin(x) + end, #base function + function (x, parameters::Dict) + cos(x) + end, #first derivative + function (x, parameters::Dict) + -sin(x) + end, #second derivative + Dict(), #no parameters +) + +# ╔═╡ c1e30a10-e9f9-4348-92b5-85fdc0be00b0 +begin + edges_linear = + Dict(("u", "x1") => ObservationCoupling(), ("x1", "x2") => DriftCoupling()) + + edges_nonlinear = Dict( + ("u", "x1") => ObservationCoupling(), + ("x1", "x2") => DriftCoupling(1, sine_transform), + ) + +end + +# ╔═╡ ec6ceba5-d202-4345-bce8-fc0dada2a019 +begin + hgf_linear = init_hgf(nodes = nodes, edges = edges_linear, verbose = false) + hgf_nonlinear = init_hgf(nodes = nodes, edges = edges_nonlinear, verbose = false) +end + +# ╔═╡ d2e95dab-7312-4835-b780-91571ba83239 +parameters = Dict( + ("x1", "autoconnection_strength") => 0, + ("x1", "volatility") => -4, + ("x2", "volatility") => -4, + ("u", "input_noise") => log(0.25), +) + +# ╔═╡ e319c480-cb6d-41fd-a4ec-892a12b95a06 +begin + set_parameters!(hgf_linear, parameters) + + set_parameters!(hgf_nonlinear, parameters) +end + +# ╔═╡ cb170251-4dce-4e75-b457-40f2fb959a5b +begin + + sample_rate = 20 + + inputs = sin.(collect(0:1/sample_rate:35)) + + inputs = rand(Normal(0, 0.25), length(inputs)) + inputs + plot(inputs) +end + +# ╔═╡ 847373ac-647d-43a3-93a1-92af9772dce0 +begin + reset!(hgf_linear) + give_inputs!(hgf_linear, inputs) + reset!(hgf_nonlinear) + give_inputs!(hgf_nonlinear, inputs) +end + +# ╔═╡ c7f92940-18c8-4212-8808-8b29d9b870a1 +plot_settings = (; label = "", title = "") + +# ╔═╡ 5835d516-f822-4128-900b-16d09b550cb7 + +plot( + plot_trajectory(hgf_linear, "u"; plot_settings..., title = "inputs"), + plot_trajectory( + hgf_linear, + ("u", "prediction"); + plot_settings..., + title = "u prediction", + ), + plot_trajectory(hgf_linear, ("x1"); plot_settings..., title = "x1 posterior"), + plot_trajectory(hgf_linear, ("x2"); plot_settings..., title = "x2 posterior"), +) + +# ╔═╡ f1ad8c91-7642-4478-8091-bbcecc9f2bcf + +plot( + plot_trajectory(hgf_nonlinear, "u"; plot_settings..., title = "inputs"), + plot_trajectory( + hgf_nonlinear, + ("u", "prediction"); + plot_settings..., + title = "u prediction", + ), + plot_trajectory(hgf_nonlinear, ("x1"); plot_settings..., title = "x1 posterior"), + plot_trajectory(hgf_nonlinear, ("x2"); plot_settings..., title = "x2 posterior"), +) + +# ╔═╡ 50330bc3-e74d-4cfc-908a-a56acbcdd2bc +begin + μ₁_linear = get_history(hgf_linear, ("x1", "posterior_mean")) + + #Band mu1 between -1 and 1 (the noise makes it occasionally jump over) + μ₁_linear = min.(μ₁_linear, 1.0) + μ₁_linear = max.(μ₁_linear, -1.0) + + μ₂_linear = get_history(hgf_linear, ("x2", "posterior_mean")) + + + + μ₁_nonlinear = get_history(hgf_nonlinear, ("x1", "posterior_mean")) + + #Band mu1 between -1 and 1 (the noise makes it occasionally jump over) + μ₁_nonlinear = min.(μ₁_nonlinear, 1.0) + μ₁_nonlinear = max.(μ₁_nonlinear, -1.0) + + μ₂_nonlinear = get_history(hgf_nonlinear, ("x2", "posterior_mean")) +end + +# ╔═╡ fa51e10d-3ab3-487c-90bc-9362956f563a +#Plot sine transformed x2 against x1 - should be equal +plot( + plot(sin.(μ₂_linear) - μ₁_linear, title = "linear"), + plot(sin.(μ₂_nonlinear) - μ₁_nonlinear, title = "nonlinear"), +) + +# ╔═╡ c52a0167-e780-47fc-901c-44cf84b973d4 +#Plot asine transformed x1 against x2 - should be equal +plot( + plot(asin.(μ₁_linear) - μ₂_linear, title = "linear"), + plot(asin.(μ₁_nonlinear) - μ₂_nonlinear, title = "nonlinear"), +) +#The linear fares worse + +# ╔═╡ af36ec40-ca4f-4aff-ae35-439adc5cae89 +begin + linear_plt = plot(asin.(μ₁_linear), label = "μ₁ asin") + plot!(μ₂_linear, label = "μ₂", title = "linear") + + nonlinear_plt = plot(asin.(μ₁_nonlinear), label = "μ₁ asin") + plot!(μ₂_nonlinear, label = "μ₂", title = "nonlinear") + + plot(linear_plt, nonlinear_plt) +end + +# ╔═╡ 0a6546fe-9f5e-4d2a-8c02-59d96332b0a9 +###NEXT STEPS: PREDICT FURTHER IN THE FUTURE + +# ╔═╡ Cell order: +# ╠═e47a29a4-38b0-4f19-972a-7c1c3e83c2f7 +# ╠═5ae02fee-48f1-11ef-209c-539e778f577d +# ╠═ff1abe62-b477-4c34-927d-4cc758981d60 +# ╠═b53c65b6-24fb-4df0-85e8-c94e973f92d1 +# ╠═c1e30a10-e9f9-4348-92b5-85fdc0be00b0 +# ╠═ec6ceba5-d202-4345-bce8-fc0dada2a019 +# ╠═d2e95dab-7312-4835-b780-91571ba83239 +# ╠═e319c480-cb6d-41fd-a4ec-892a12b95a06 +# ╠═cb170251-4dce-4e75-b457-40f2fb959a5b +# ╠═847373ac-647d-43a3-93a1-92af9772dce0 +# ╠═c7f92940-18c8-4212-8808-8b29d9b870a1 +# ╠═5835d516-f822-4128-900b-16d09b550cb7 +# ╠═f1ad8c91-7642-4478-8091-bbcecc9f2bcf +# ╠═50330bc3-e74d-4cfc-908a-a56acbcdd2bc +# ╠═fa51e10d-3ab3-487c-90bc-9362956f563a +# ╠═c52a0167-e780-47fc-901c-44cf84b973d4 +# ╠═af36ec40-ca4f-4aff-ae35-439adc5cae89 +# ╠═0a6546fe-9f5e-4d2a-8c02-59d96332b0a9 diff --git a/src/create_hgf/hgf_structs.jl b/src/create_hgf/hgf_structs.jl index c6ff7b3..5c8e37e 100644 --- a/src/create_hgf/hgf_structs.jl +++ b/src/create_hgf/hgf_structs.jl @@ -40,7 +40,9 @@ struct EnhancedUpdate <: HGFUpdateType end #Types for specifying nonlinear transformations abstract type CouplingTransform end -Base.@kwdef mutable struct LinearTransform <: CouplingTransform end +Base.@kwdef mutable struct LinearTransform <: CouplingTransform + parameters::Dict = Dict() +end Base.@kwdef mutable struct NonlinearTransform <: CouplingTransform base_function::Function diff --git a/test/testsuite/test_nonlinear_transforms.jl b/test/testsuite/test_nonlinear_transforms.jl index fbab0ad..cb32bae 100644 --- a/test/testsuite/test_nonlinear_transforms.jl +++ b/test/testsuite/test_nonlinear_transforms.jl @@ -1,5 +1,6 @@ using Test using HierarchicalGaussianFiltering +using Distributions @testset "Testing nonlinear transforms" begin @@ -36,6 +37,16 @@ using HierarchicalGaussianFiltering hgf = init_hgf(nodes = nodes, edges = edges, verbose = false) - update_hgf!(hgf, 1) + set_parameters!( + hgf, + Dict(("u", "input_noise") => 4("x1", "autoconnection_strength") => 0), + ) + + inputs = sin.(collect(0:1/20:1000/20)) + + #Add gaussian noise + inputs = rand(Normal(0, 0.5), length(inputs)) + inputs + + give_inputs!(hgf, inputs) end end