Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

new version #162

Merged
merged 4 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ authors = [ "Peter Thestrup Waade [email protected]",
"Anna Hedvig Møller [email protected]",
"Jacopo Comoglio [email protected]",
"Christoph Mathys [email protected]"]
version = "0.5.4"
version = "0.5.5"


[deps]
Expand All @@ -13,7 +13,7 @@ Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"

[compat]
ActionModels = "0.5"
ActionModels = "0.6"
Distributions = "0.25"
RecipesBase = "1"
julia = "1.10"
9 changes: 7 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,12 @@ plot_trajectory!(agent, ("x", "prediction"))
using Distributions
prior = Dict(("xprob", "volatility") => Normal(1, 0.5))

model = fit_model(agent, prior, inputs, actions, n_iterations = 20)
#Create model
model = create_model(agent, prior, inputs, actions;)

#Fit single chain with 10 iterations
fitted_model = fit_model(model; n_iterations = 10, n_chains = 1)

````
![Image1](docs/src/images/readme/fit_model.png)
### Plot chains
Expand All @@ -106,7 +111,7 @@ plot(model)
### Plot prior angainst posterior

````@example index
plot_parameter_distribution(model, prior)
# plot_parameter_distribution(model, prior)
````
![Image1](docs/src/images/readme/prior_posterior.png)
### Get posterior
Expand Down
8 changes: 6 additions & 2 deletions docs/julia_files/index.jl
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,11 @@ plot_trajectory!(agent, ("xbin", "prediction"))
using Distributions
prior = Dict(("xprob", "volatility") => Normal(1, 0.5))

model = fit_model(agent, prior, inputs, actions, n_iterations = 20)
#Create model
model = create_model(agent, prior, inputs, actions)

#Fit single chain with 10 iterations
fitted_model = fit_model(model; n_iterations = 10, n_chains = 1)

#-

Expand All @@ -65,7 +69,7 @@ plot(model)
#-

# ### Plot prior angainst posterior
plot_parameter_distribution(model, prior)
# plot_parameter_distribution(model, prior)
#-
# ### Get posterior
get_posteriors(model)
30 changes: 13 additions & 17 deletions docs/julia_files/tutorials/classic_binary.jl
Original file line number Diff line number Diff line change
Expand Up @@ -81,27 +81,23 @@ plot_predictive_simulation(
actions = CSV.read(data_path * "classic_binary_actions.csv", DataFrame)[!, 1];
#-
# Fit the actions
fitted_model = fit_model(
agent,
param_priors,
inputs,
actions,
fixed_parameters = fixed_parameters,
verbose = true,
n_iterations = 10,
)
#Create model
model = create_model(agent, param_priors, inputs, actions)

#Fit single chain with 10 iterations
fitted_model = fit_model(model; n_iterations = 10, n_chains = 1)
#-
#Plot the chains
plot(fitted_model)
#-
# Plot the posterior
plot_parameter_distribution(fitted_model, param_priors)
# plot_parameter_distribution(fitted_model, param_priors)
#-
# Posterior predictive plot
plot_predictive_simulation(
fitted_model,
agent,
inputs,
("xbin", "prediction_mean"),
n_simulations = 3,
)
# plot_predictive_simulation(
# fitted_model,
# agent,
# inputs,
# ("xbin", "prediction_mean"),
# n_simulations = 3,
# )
15 changes: 5 additions & 10 deletions docs/julia_files/tutorials/classic_usdchf.jl
Original file line number Diff line number Diff line change
Expand Up @@ -104,19 +104,14 @@ plot_predictive_simulation(
)
#-
# Do parameter recovery
fitted_model = fit_model(
agent,
param_priors,
inputs,
actions,
fixed_parameters = fixed_parameters,
verbose = false,
n_iterations = 10,
)
model = create_model(agent, param_priors, inputs, actions)

#Fit single chain with 10 iterations
fitted_model = fit_model(model; n_iterations = 10, n_chains = 1)
#-
# Plot the chains
plot(fitted_model)
#-
# Plot prior posterior distributions
plot_parameter_distribution(fitted_model, param_priors)
# plot_parameter_distribution(fitted_model, param_priors)
#-
32 changes: 14 additions & 18 deletions docs/julia_files/user_guide/fitting_hgf_models.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,23 +103,19 @@ param_priors = Dict(("xprob", "volatility") => Normal(-3.0, 0.5));

# We can fit the evolution rate by inputting the variables:

# Fit the actions
fitted_model = fit_model(
agent,
param_priors,
inputs,
actions,
fixed_parameters = fixed_parameters,
verbose = true,
n_iterations = 10,
)
# Create model
model = create_model(agent, param_priors, inputs, actions)

#Fit single chain with 10 iterations
fitted_model = fit_model(model; n_iterations = 10, n_chains = 1)

set_parameters!(agent, hgf_parameters)

# ## Plotting Functions
plot(fitted_model)

# Plot the posterior
plot_parameter_distribution(fitted_model, param_priors)
# plot_parameter_distribution(fitted_model, param_priors)


# # Predictive Simulations with plot\_predictive\_distributions()
Expand Down Expand Up @@ -151,13 +147,13 @@ fitted_model =
set_parameters!(agent, hgf_parameters)

# We can place our turing chain as a our posterior in the function, and get our posterior predictive simulation plot:
plot_predictive_simulation(
fitted_model,
agent,
inputs,
("xbin", "prediction_mean"),
n_simulations = 100,
)
# plot_predictive_simulation(
# fitted_model,
# agent,
# inputs,
# ("xbin", "prediction_mean"),
# n_simulations = 100,
# )

# We can get the posterior
get_posteriors(fitted_model)
Expand Down
2 changes: 1 addition & 1 deletion docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ using Documenter
using Literate


hgf_path = dirname(dirname(pathof(HierarchicalGaussianFiltering)))
hgf_path = dirname(pathof(HierarchicalGaussianFiltering))

juliafiles_path = hgf_path * "/docs/julia_files"
user_guides_path = juliafiles_path * "/user_guide"
Expand Down
File renamed without changes
File renamed without changes
30 changes: 9 additions & 21 deletions src/ActionModels_variations/utils/get_history.jl
Original file line number Diff line number Diff line change
Expand Up @@ -85,32 +85,20 @@

function ActionModels.get_history(node::AbstractNode)

#Initialize dictionary
state_histories = Dict()

#Go through all states in the node's history
for state_key in fieldnames(typeof(node.history))
#Get the node's name and history
node_name = node.name
node_history = node.history

Check warning on line 90 in src/ActionModels_variations/utils/get_history.jl

View check run for this annotation

Codecov / codecov/patch

src/ActionModels_variations/utils/get_history.jl#L89-L90

Added lines #L89 - L90 were not covered by tests

#And add their histories to the output
state_histories[String(state_key)] = getproperty(node.history, state_key)
#Return a dictionary of the node's history
Dict((node_name,string(key))=>getfield(node_history, key) for key ∈ fieldnames(typeof(node_history)))

Check warning on line 93 in src/ActionModels_variations/utils/get_history.jl

View check run for this annotation

Codecov / codecov/patch

src/ActionModels_variations/utils/get_history.jl#L93

Added line #L93 was not covered by tests

end

return state_histories
end

function ActionModels.get_history(hgf::HGF)

#Initialize dict for state histories
state_histories = Dict()

#For each node
for node in hgf.ordered_nodes.all_nodes
#Get out the histories of the node
node_histories = get_history(node)
#And merge them with the dict
merge(state_histories, node_histories)
end
#Get the histories of all nodes
merge(

Check warning on line 100 in src/ActionModels_variations/utils/get_history.jl

View check run for this annotation

Codecov / codecov/patch

src/ActionModels_variations/utils/get_history.jl#L100

Added line #L100 was not covered by tests
[get_history(node) for node in hgf.ordered_nodes.all_nodes]...
)

return state_histories
end
39 changes: 14 additions & 25 deletions src/ActionModels_variations/utils/get_states.jl
Original file line number Diff line number Diff line change
Expand Up @@ -100,38 +100,27 @@
throw(ArgumentError("The node $node_name does not exist"))
end

#Initialize dict
states = Dict()

#Get out the node
node = hgf.all_nodes[node_name]
#Get the states of the node
node = get_states(hgf.all_nodes[node_name])

Check warning on line 104 in src/ActionModels_variations/utils/get_states.jl

View check run for this annotation

Codecov / codecov/patch

src/ActionModels_variations/utils/get_states.jl#L104

Added line #L104 was not covered by tests
end

#For each state in the node
for state_key in fieldnames(typeof(node.states))
function ActionModels.get_states(node::AbstractNode)

#Add it to the dictionary
states[(node_name, String(state_key))] = get_states(node, String(state_key))
#Get the node's name and states
node_name = node.name
node_states = node.states

end
#Return a dictionary of the node's states
Dict((node_name,string(key))=>getfield(node_states, key) for key ∈ fieldnames(typeof(node_states)))

#Get its states
return states
end


### For getting all states of an HGF ###
function ActionModels.get_states(hgf::HGF)

#Initialize dict for state states
states = Dict()

#For each node
for node_name in keys(hgf.all_nodes)
#Get out the states of the node
node_states = get_states(hgf, node_name)
#And merge them with the dict
states = merge(states, node_states)
end

return states
#Get the states of all nodes
merge(
[get_states(node) for node in hgf.ordered_nodes.all_nodes]...
)

end
68 changes: 30 additions & 38 deletions test/testsuite/test_fit_model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -38,30 +38,26 @@ using Turing
("x", "drift") => Normal(0, 1),
)

#Create model
model = create_model(test_agent, test_param_priors, test_input, test_responses;)

#Fit single chain with defaults
fitted_model = fit_model(
test_agent,
test_param_priors,
test_input,
test_responses;
fixed_parameters = test_fixed_parameters,
verbose = false,
n_iterations = 10,
)
@test fitted_model isa Turing.Chains
fitted_model = fit_model(model; n_iterations = 10, n_chains = 1)

@test fitted_model isa ActionModels.FitModelResults

#Plot the parameter distribution
plot_parameter_distribution(fitted_model, test_param_priors)
# plot_parameter_distribution(fitted_model, test_param_priors)

# Posterior predictive plot
plot_predictive_simulation(
fitted_model,
test_agent,
test_input,
("x", "posterior_mean");
verbose = false,
n_simulations = 3,
)
# plot_predictive_simulation(
# fitted_model,
# test_agent,
# test_input,
# ("x", "posterior_mean");
# verbose = false,
# n_simulations = 3,
# )
end


Expand Down Expand Up @@ -95,29 +91,25 @@ using Turing
("xprob", "volatility") => Normal(-7, 5),
)

#Create model
model = create_model(test_agent, test_param_priors, test_input, test_responses;)

#Fit single chain with defaults
fitted_model = fit_model(
test_agent,
test_param_priors,
test_input,
test_responses;
fixed_parameters = test_fixed_parameters,
verbose = false,
n_iterations = 10,
)
@test fitted_model isa Turing.Chains
fitted_model = fit_model(model; n_iterations = 10, n_chains = 1)

@test fitted_model isa ActionModels.FitModelResults

#Plot the parameter distribution
plot_parameter_distribution(fitted_model, test_param_priors)
# plot_parameter_distribution(fitted_model, test_param_priors)

# Posterior predictive plot
plot_predictive_simulation(
fitted_model,
test_agent,
test_input,
("xbin", "posterior_mean"),
verbose = false,
n_simulations = 3,
)
# plot_predictive_simulation(
# fitted_model,
# test_agent,
# test_input,
# ("xbin", "posterior_mean"),
# verbose = false,
# n_simulations = 3,
# )
end
end
Loading
Loading