-
Notifications
You must be signed in to change notification settings - Fork 217
ParaView
You are here: Home > PIConGPU User Documentation > ParaView
This is a short introduction for the post processing of our data.
Let us assume you created our output with libSplash using the --hdf5.period <N>
output flags.
Afterwards, run our small script that analyses your outputs meta data and creates an xdmf file for it:
python pic2xdmf.py -t <PATH-to-your-run>/simOutput/h5
Assuming your cluster looks more or less like this:
[YOUR-COMPUTER]
| ~
*big-bad-internet* ~ [ClusterNode001] [ClusterNode002]
| ~ [ClusterNode003] [ClusterNode004]
V ~ [ClusterNode005] [ClusterNodeXYZ]
[LOGIN-NODE] ~~~~~~~ some more firewall'n ~~~~~~~~
| ^
~~~~FIREWALL~~~~ /
| *batch system*
\_-> [HEAD-NODE] ---/
In case your working at HZDR, replace the words like this:
-
LOGIN-NODE
->uts.fz-rossendorf.de
-
HEAD-NODE
->hypnos2
Open a Tunnel to the HEAD-NODE
:
ssh -f -L 44333:<HEAD-NODE>:22 <user>@<LOGIN-NODE> -N
# this makes logins easier:
ssh-copy-id -i ~/.ssh/id_rsa.pub -p 44333 <user>@localhost
Log into the HEAD-NODE
ssh -p 44333 <user>@localhost
and prepare a job script startPV.sh
like this one (assuming a CPU only queue):
#PBS -q laser
#PBS -l walltime=01:00:00
#PBS -N pvserver
#PBS -l nodes=8:ppn=32
#PBS -d .
#PBS -o stdout
#PBS -e stderr
echo 'Running reverse pvserver...'
cd .
export MODULES_NO_OUTPUT=1
source ~/picongpu.profile
unset MODULES_NO_OUTPUT
module load tools/mesa/7.8
module load analysis/paraview/4.1.0.laser
#set user rights to u=rwx;g=r-x;o=---
umask 0027
sleep 2
mpiexec --prefix $MPIHOME -x LIBRARY_PATH -x LD_LIBRARY_PATH -npernode 32 -n 256 \
pvserver --use-offscreen-rendering -rc -ch=hypnos2
# some interesting flags one can use:
# --mca mpi_yield_when_idle 1
# reduces load while idle (no busy loop)
# http://www.open-mpi.org/faq/?category=running#force-aggressive-degraded
# -am $HOME/openib.conf
# in case you send HUGE data chunks over infiniband
All wiki entries describe the dev branch. Features may be different in the current master branch.
Before you start please read our README!
PIConGPU is a scientific project. If you present and/or publish scientific results that used PIConGPU, you should set a reference to show your support. Our according up-to-date publication at the time of your publication should be inquired from:
The documentation in this wiki is still not complete and we need your help keeping it up to date. Feel free to help improving this wiki!