-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain_cifar.py
180 lines (149 loc) · 7.4 KB
/
main_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from __future__ import print_function
import argparse
import os
import random
import numpy as np
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torchvision import models
from dataloaders import dataloader_cifar as dataloader
from models import bit_models
from models.PreResNet import *
from models.resnet import SupCEResNet
from train_cifar import run_train_loop
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
parser.add_argument('--batch_size', default=64, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning_rate', default=0.02, type=float, help='initial learning rate')
parser.add_argument('--noise_mode', default='sym')
parser.add_argument('--alpha', default=4., type=float, help='parameter for Beta')
parser.add_argument('--alpha-loss', default=0.5, type=float, help='parameter for Beta in loss')
parser.add_argument('--lambda_u', default=25, type=float, help='weight for unsupervised loss')
parser.add_argument('--p_threshold', default=0.5, type=float, help='clean probability threshold')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature')
parser.add_argument('--num_epochs', default=360, type=int)
parser.add_argument('--r', default=0.5, type=float, help='noise ratio')
parser.add_argument('--id', default='')
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid', default=0, type=int)
parser.add_argument('--data_path', default='./cifar-10', type=str, help='path to dataset')
parser.add_argument('--net', default='resnet18', type=str, help='net')
parser.add_argument('--method', default='reg', type=str, help='method')
parser.add_argument('--dataset', default='cifar10', type=str)
parser.add_argument('--experiment-name', required=True, type=str)
parser.add_argument('--aug', dest='aug', action='store_true', help='use stronger aug')
parser.add_argument('--use-std', dest='use_std', action='store_true', help='use stronger aug')
parser.add_argument('--drop', dest='drop', action='store_true', help='use drop')
parser.add_argument('--not-rampup', dest='not_rampup', action='store_true', help='not rumpup')
parser.add_argument('--supcon', dest='supcon', action='store_true', help='use supcon')
parser.add_argument('--use-aa', dest='use_aa', action='store_true', help='use supcon')
args = parser.parse_args()
if torch.cuda.is_available():
torch.cuda.set_device(args.gpuid)
torch.cuda.manual_seed_all(args.seed)
args.device = 'cuda:0'
else:
args.device = 'cpu'
random.seed(args.seed)
torch.manual_seed(args.seed)
return args
def linear_rampup(current, warm_up, lambda_u, rampup_length=16):
current = np.clip((current - warm_up) / rampup_length, 0.0, 1.0)
return lambda_u * float(current)
class SemiLoss(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch, warm_up, lambda_u):
probs_u = torch.softmax(outputs_u, dim=1)
Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
Lu = torch.mean((probs_u - targets_u) ** 2)
return Lx, Lu, linear_rampup(epoch, warm_up, lambda_u)
class NegEntropy(object):
def __call__(self, outputs):
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log() * probs, dim=1))
def create_model_reg(net='resnet18', dataset='cifar100', num_classes=100, device='cuda:0', drop=0):
if net == 'resnet18':
model = ResNet18(num_classes=num_classes, drop=drop)
model = model.to(device)
return model
else:
model = SupCEResNet(net, num_classes=num_classes)
model = model.to(device)
return model
def create_model_selfsup(net='resnet18', dataset='cifar100', num_classes=100, device='cuda:0', drop=0):
chekpoint = torch.load('pretrained/ckpt_{}_{}.pth'.format(dataset, net))
sd = {}
for ke in chekpoint['model']:
nk = ke.replace('module.', '')
sd[nk] = chekpoint['model'][ke]
model = SupCEResNet(net, num_classes=num_classes)
model.load_state_dict(sd, strict=False)
model = model.to(device)
return model
def create_model_bit(net='resnet18', dataset='cifar100', num_classes=100, device='cuda:0', drop=0):
if net == 'resnet50':
model = bit_models.KNOWN_MODELS['BiT-S-R50x1'](head_size=num_classes, zero_head=True)
model.load_from(np.load("pretrained/BiT-S-R50x1.npz"))
model = model.to(device)
elif net == 'resnet18':
model = models.resnet18(pretrained=True)
model.fc = nn.Linear(512 * 1, num_classes)
model = model.to(device)
else:
raise ValueError()
return model
def main():
args = parse_args()
os.makedirs('./checkpoint', exist_ok=True)
log_name = './checkpoint/%s_%s_%.2f_%.1f_%s' % (
args.experiment_name, args.dataset, args.r, args.lambda_u, args.noise_mode)
stats_log = open(log_name + '_stats.txt', 'w')
test_log = open(log_name + '_acc.txt', 'w')
loss_log = open(log_name + '_loss.txt', 'w')
# define warmup
if args.dataset == 'cifar10':
if args.method == 'reg':
warm_up = 20 if args.aug else 10
else:
warm_up = 5
num_classes = 10
elif args.dataset == 'cifar100':
if args.method == 'reg':
warm_up = 60 if args.aug else 30
else:
warm_up = 5
num_classes = 100
else:
raise ValueError('Wrong dataset')
loader = dataloader.cifar_dataloader(args.dataset, r=args.r, noise_mode=args.noise_mode, batch_size=args.batch_size,
num_workers=5, root_dir=args.data_path, log=stats_log,
noise_file='%s/%.2f_%s.json' % (args.data_path, args.r, args.noise_mode),
stronger_aug=args.aug)
print('| Building net')
if args.method == 'bit':
create_model = create_model_bit
elif args.method == 'reg':
create_model = create_model_reg
elif args.method == 'selfsup':
create_model = create_model_selfsup
else:
raise ValueError()
net1 = create_model(net=args.net, dataset=args.dataset, num_classes=num_classes, device=args.device, drop=args.drop)
net2 = create_model(net=args.net, dataset=args.dataset, num_classes=num_classes, device=args.device, drop=args.drop)
cudnn.benchmark = False # True
criterion = SemiLoss()
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
optimizer2 = optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
sched1 = torch.optim.lr_scheduler.StepLR(optimizer1, 150, gamma=0.1)
sched2 = torch.optim.lr_scheduler.StepLR(optimizer2, 150, gamma=0.1)
CE = nn.CrossEntropyLoss(reduction='none')
CEloss = nn.CrossEntropyLoss()
if args.noise_mode == 'asym':
conf_penalty = NegEntropy()
else:
conf_penalty = None
all_loss = [[], []] # save the history of losses from two networks
run_train_loop(net1, optimizer1, sched1, net2, optimizer2, sched2, criterion, CEloss, CE, loader, args.p_threshold,
warm_up, args.num_epochs, all_loss, args.batch_size, num_classes, args.device, args.lambda_u, args.T,
args.alpha, args.noise_mode, args.dataset, args.r, conf_penalty, stats_log, loss_log, test_log)
if __name__ == '__main__':
main()