-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain_clothing1M.py
250 lines (210 loc) · 10.3 KB
/
main_clothing1M.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from __future__ import print_function
import argparse
import os
import random
import sys
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
from sklearn.mixture import GaussianMixture
from dataloaders import dataloader_clothing1M as dataloader
from models.resnet import SupCEResNet
from train import train, warmup
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch Clothing1M Training')
parser.add_argument('--batch_size', default=32, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning_rate', default=0.002, type=float, help='initial learning rate')
parser.add_argument('--alpha', default=0.5, type=float, help='parameter for Beta')
parser.add_argument('--lambda_u', default=0, type=float, help='weight for unsupervised loss')
parser.add_argument('--p_threshold', default=0.5, type=float, help='clean probability threshold')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature')
parser.add_argument('--num_epochs', default=80, type=int)
parser.add_argument('--warmup', default=5, type=int)
parser.add_argument('--id', default='clothing1m')
parser.add_argument('--data_path', default='../../Clothing1M/data', type=str, help='path to dataset')
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid', default=0, type=int)
parser.add_argument('--num_class', default=14, type=int)
parser.add_argument('--num_batches', default=1000, type=int)
parser.add_argument('--experiment-name', required=True, type=str)
parser.add_argument('--method', default='reg', type=str, help='method')
args = parser.parse_args()
if torch.cuda.is_available():
torch.cuda.set_device(args.gpuid)
torch.cuda.manual_seed_all(args.seed)
args.device = 'cuda:0'
else:
args.device = 'cpu'
random.seed(args.seed)
torch.manual_seed(args.seed)
return args
def val(net, val_loader, best_acc, k, exp_id, experiment_name):
net.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(val_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = net(inputs)
_, predicted = torch.max(outputs, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100. * correct / total
print("\n| Validation\t Net%d Acc: %.2f%%" % (k, acc))
if acc > best_acc[k - 1]:
best_acc[k - 1] = acc
print('| Saving Best Net%d ...' % k)
save_point = './checkpoint/%s_%s_net%d.pth.tar' % (exp_id, experiment_name, k)
torch.save(net.state_dict(), save_point)
return acc
def run_test(net1, net2, test_loader):
net1.eval()
net2.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs1 = net1(inputs)
outputs2 = net2(inputs)
outputs = outputs1 + outputs2
_, predicted = torch.max(outputs, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100. * correct / total
print("\n| Test Acc: %.2f%%\n" % (acc))
return acc
def eval_train(epoch, model, eval_loader, criterion, num_batches, batch_size, stats_log):
model.eval()
num_samples = num_batches * batch_size + 37497 # add for intersection
losses = torch.zeros(num_samples)
paths = []
n = 0
with torch.no_grad():
for batch_idx, (inputs, _, targets, clean_target, path, _) in enumerate(eval_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
loss = criterion(outputs, targets)
for b in range(inputs.size(0)):
losses[n] = loss[b]
paths.append(path[b])
n += 1
sys.stdout.write('\r')
sys.stdout.write('| Evaluating loss Iter %3d\t' % (batch_idx))
sys.stdout.flush()
losses_noisy = losses[:num_batches * batch_size]
losses = (losses - losses_noisy.min()) / (losses_noisy.max() - losses_noisy.min())
losses_noisy = losses[:num_batches * batch_size]
losses, losses_noisy = losses.reshape(-1, 1), losses_noisy.reshape(-1, 1)
gmm = GaussianMixture(n_components=2, max_iter=100, reg_covar=5e-4, tol=1e-2)
gmm.fit(losses_noisy)
clean_idx, noisy_idx = gmm.means_.argmin(), gmm.means_.argmax()
stats_log.write('GMM results: {} with variance {} and weight {}\t'
'{} with variance {} and weight {}\n'.format(gmm.means_[clean_idx], gmm.covariances_[clean_idx],
gmm.weights_[clean_idx],
gmm.means_[noisy_idx], gmm.covariances_[noisy_idx],
gmm.weights_[noisy_idx], ))
stats_log.flush()
prob = gmm.predict_proba(losses)
prob = prob[:, clean_idx]
return prob, paths
class NegEntropy(object):
def __call__(self, outputs):
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log() * probs, dim=1))
def create_model_selfsup(net='resnet50', num_class=14):
chekpoint = torch.load('pretrained/ckpt_clothing_{}.pth'.format(net))
sd = {}
for ke in chekpoint['model']:
nk = ke.replace('module.', '')
sd[nk] = chekpoint['model'][ke]
model = SupCEResNet(net, num_classes=num_class, pool=True)
model.load_state_dict(sd, strict=False)
model = model.cuda()
return model
def create_model_reg(net='resnet50', num_class=14):
model = models.resnet50(pretrained=True)
model.fc = nn.Linear(2048, num_class)
model = model.cuda()
return model
def main():
args = parse_args()
os.makedirs('./checkpoint', exist_ok=True)
log_name = './checkpoint/%s_%s' % (args.experiment_name, args.id)
stats_log = open(log_name + '_stats.txt', 'w')
test_log = open(log_name + '_acc.txt', 'w')
test_log.flush()
loader = dataloader.clothing_dataloader(root=args.data_path, batch_size=args.batch_size, num_workers=5,
num_batches=args.num_batches, log=stats_log)
print('| Building net')
if args.method == 'reg':
create_model = create_model_reg
elif args.method == 'selfsup':
create_model = create_model_selfsup
else:
raise ValueError()
net1 = create_model(net='resnet50', num_class=args.num_class)
net2 = create_model(net='resnet50', num_class=args.num_class)
cudnn.benchmark = True
optimizer1 = optim.AdamW(net1.parameters(), lr=args.lr, weight_decay=1e-3)
optimizer2 = optim.AdamW(net2.parameters(), lr=args.lr, weight_decay=1e-3)
CE = nn.CrossEntropyLoss(reduction='none')
CEloss = nn.CrossEntropyLoss()
conf_penalty = NegEntropy()
best_acc = [0, 0]
for epoch in range(args.num_epochs + 1):
lr = args.lr
if epoch >= 40:
lr /= 10
for param_group in optimizer1.param_groups:
param_group['lr'] = lr
for param_group in optimizer2.param_groups:
param_group['lr'] = lr
if epoch < args.warmup: # warm up
train_loader = loader.run('warmup')
print('Warmup Net1')
warmup(epoch, net1, optimizer1, train_loader, CEloss, conf_penalty, args.device, 'clothing', None,
args.num_epochs, None)
train_loader = loader.run('warmup')
print('\nWarmup Net2')
warmup(epoch, net2, optimizer2, train_loader, CEloss, conf_penalty, args.device, 'clothing', None,
args.num_epochs, None)
if epoch > 1:
print('\n\nEval Net2')
pred2 = (prob2 > args.p_threshold)
labeled_trainloader, unlabeled_trainloader = loader.run('train', pred2, prob2,
paths=paths2) # co-divide
else:
pred1 = (prob1 > args.p_threshold) # divide dataset
pred2 = (prob2 > args.p_threshold)
print('\n\nTrain Net1')
labeled_trainloader, unlabeled_trainloader = loader.run('train', pred2, prob2, paths=paths2) # co-divide
train(epoch, net1, net2, None, optimizer1, labeled_trainloader, unlabeled_trainloader, 0, args.batch_size,
args.num_class, args.device, args.T, args.alpha, args.warmup, 'clothing', None, None,
args.num_epochs, smooth_clean=True) # train net1
print('\nTrain Net2')
labeled_trainloader, unlabeled_trainloader = loader.run('train', pred1, prob1, paths=paths1) # co-divide
train(epoch, net2, net1, None, optimizer2, labeled_trainloader, unlabeled_trainloader, 0, args.batch_size,
args.num_class, args.device, args.T, args.alpha, args.warmup, 'clothing', None, None,
args.num_epochs, smooth_clean=True) # train net2
val_loader = loader.run('val') # validation
acc1 = val(net1, val_loader, best_acc, 1, args.id, args.experiment_name)
acc2 = val(net2, val_loader, best_acc, 2, args.id, args.experiment_name)
test_log.write('Validation Epoch:%d Acc1:%.2f Acc2:%.2f\n' % (epoch, acc1, acc2))
test_log.flush()
print('\n==== net 1 evaluate next epoch training data loss ====')
eval_loader = loader.run('eval_train') # evaluate training data loss for next epoch
prob1, paths1 = eval_train(epoch, net1, eval_loader, CE, args.num_batches, args.batch_size, stats_log)
print('\n==== net 2 evaluate next epoch training data loss ====')
eval_loader = loader.run('eval_train')
prob2, paths2 = eval_train(epoch, net2, eval_loader, CE, args.num_batches, args.batch_size, stats_log)
test_loader = loader.run('test')
net1.load_state_dict(torch.load('./checkpoint/%s_%s_net1.pth.tar' % (args.id, args.experiment_name)))
net2.load_state_dict(torch.load('./checkpoint/%s_%s_net2.pth.tar' % (args.id, args.experiment_name)))
acc = run_test(net1, net2, test_loader)
test_log.write('Test Accuracy:%.2f\n' % (acc))
test_log.flush()
if __name__ == '__main__':
main()