-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
277 lines (240 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import torch.nn as nn
import torch.optim as optim
import random
import numpy as np
# --- パラメータ設定セクション ---
config = {
"embed_dim": 1024,
"num_heads": 8,
"num_layers": 2,
"action_dim": 1,
"state_dim": 1,
"num_heart": 1000,
"memory_length": 10,
"reward_scale": 10,
"gamma": 0.99, # 割引率をここに追加
"learning_rate": 0.0001,
"num_episodes": 1000,
"steps_per_episode": 10,
"teacher_data_ids": {
0: 3506,
90: 929,
180: 9464,
270: 2902
}
}
# Transformer Block with QKV Attention for State-Action Modeling
class TransformerBlockWithQKV(nn.Module):
def __init__(self, embed_dim, num_heads):
super(TransformerBlockWithQKV, self).__init__()
self.attention = nn.MultiheadAttention(embed_dim=embed_dim, num_heads=num_heads)
self.feed_forward = nn.Sequential(
nn.Linear(embed_dim, embed_dim * 2),
nn.ReLU(),
nn.Linear(embed_dim * 2, embed_dim)
)
self.layernorm1 = nn.LayerNorm(embed_dim)
self.layernorm2 = nn.LayerNorm(embed_dim)
def forward(self, x, memory):
attn_output, _ = self.attention(x, memory, memory)
x = self.layernorm1(x + attn_output)
ff_output = self.feed_forward(x)
x = self.layernorm2(x + ff_output)
return x
# 修正されたReinforcement Learning Model
class StateActionTransformerWithQKV(nn.Module):
def __init__(self, state_dim, action_dim, embed_dim, num_heads, num_layers, num_heart, memory_length):
super(StateActionTransformerWithQKV, self).__init__()
self.fc1 = nn.Linear(state_dim, embed_dim)
self.transformer_blocks1 = nn.ModuleList(
[TransformerBlockWithQKV(embed_dim, num_heads) for _ in range(num_layers)]
)
self.fc2 = nn.Linear(embed_dim, num_heart)
self.embedding = nn.Embedding(10000, embed_dim)
self.transformer_blocks2 = nn.ModuleList(
[TransformerBlockWithQKV(embed_dim, num_heads) for _ in range(num_layers)]
)
self.fc3 = nn.Linear(embed_dim, action_dim)
# メモリバッファの初期化
self.memory_length = memory_length
self.memory = torch.zeros(memory_length, 1, embed_dim)
def forward(self, x):
x = torch.relu(self.fc1(x)).unsqueeze(0).unsqueeze(1)
for transformer_block in self.transformer_blocks1:
x = transformer_block(x, self.memory)
x = self.fc2(x.squeeze(0).squeeze(0))
x = torch.round(x * 10000).int()
zero_indices = (x == 0).nonzero(as_tuple=True)[0]
if len(zero_indices) > 1:
x[zero_indices[1]:] = 0
x = self.embedding(x.clamp(0, 9999)).unsqueeze(0)
for transformer_block in self.transformer_blocks2:
x = transformer_block(x, x)
x = self.fc3(x.mean(dim=1))
return x
# Generator Model
class Generator(nn.Module):
def __init__(self, state_dim, embed_dim, num_heads, num_layers, num_heart):
super(Generator, self).__init__()
self.fc1 = nn.Linear(state_dim, embed_dim)
self.transformer_blocks = nn.ModuleList(
[TransformerBlockWithQKV(embed_dim, num_heads) for _ in range(num_layers)]
)
self.fc2 = nn.Linear(embed_dim, num_heart)
def forward(self, x):
x = torch.relu(self.fc1(x)).unsqueeze(0)
for transformer_block in self.transformer_blocks:
x = transformer_block(x, x)
x = self.fc2(x).squeeze(0)
return torch.round(x * 10000).int()
# Discriminator Model
class Discriminator(nn.Module):
def __init__(self, input_dim, embed_dim, num_heads, num_layers):
super(Discriminator, self).__init__()
self.embedding = nn.Embedding(10000, embed_dim)
self.transformer_blocks = nn.ModuleList(
[TransformerBlockWithQKV(embed_dim, num_heads) for _ in range(num_layers)]
)
self.fc = nn.Linear(embed_dim, 1)
def forward(self, x):
x = self.embedding(x.clamp(0, 9999)).unsqueeze(0)
for transformer_block in self.transformer_blocks:
x = transformer_block(x, x)
x = x.mean(dim=1)
return torch.sigmoid(self.fc(x))
def initialize_models(config):
rl_model = StateActionTransformerWithQKV(
config["state_dim"], config["action_dim"], config["embed_dim"], config["num_heads"], config["num_layers"], config["num_heart"], config["memory_length"]
)
generator = Generator(
config["state_dim"], config["embed_dim"], config["num_heads"], config["num_layers"], config["num_heart"]
)
discriminator = Discriminator(config["num_heart"], config["embed_dim"], config["num_heads"], config["num_layers"])
return rl_model, generator, discriminator
def initialize_optimizers(models, learning_rate):
rl_optimizer = optim.Adam(models[0].parameters(), lr=learning_rate)
gen_optimizer = optim.Adam(models[1].parameters(), lr=learning_rate)
disc_optimizer = optim.Adam(models[2].parameters(), lr=learning_rate)
return rl_optimizer, gen_optimizer, disc_optimizer
def compute_discounted_rewards(rewards, gamma):
discounted_rewards = []
cumulative_reward = 0
for reward in reversed(rewards):
cumulative_reward = reward + gamma * cumulative_reward
discounted_rewards.insert(0, cumulative_reward)
return discounted_rewards
class TrainingController:
def __init__(self, rl_model, generator, discriminator, rl_optimizer, gen_optimizer, disc_optimizer, rl_criterion, gen_criterion, disc_criterion, reward_scale):
self.rl_model = rl_model
self.generator = generator
self.discriminator = discriminator
self.rl_optimizer = rl_optimizer
self.gen_optimizer = gen_optimizer
self.disc_optimizer = disc_optimizer
self.rl_criterion = rl_criterion
self.gen_criterion = gen_criterion
self.disc_criterion = disc_criterion
self.reward_scale = reward_scale
def train_rl(self, states, discounted_rewards):
self.rl_optimizer.zero_grad()
rl_loss = -torch.tensor(discounted_rewards, requires_grad=True).sum()
rl_loss.backward()
self.rl_optimizer.step()
return rl_loss.item()
def train_gan(self, state, target_language_ids):
self.gen_optimizer.zero_grad()
generated_ids = self.generator(state)
fake_output_for_generator = self.discriminator(generated_ids)
gen_loss = self.gen_criterion(fake_output_for_generator, torch.ones_like(fake_output_for_generator))
gen_loss.backward()
self.gen_optimizer.step()
self.disc_optimizer.zero_grad()
real_output = self.discriminator(target_language_ids)
real_loss = self.disc_criterion(real_output, torch.ones_like(real_output))
fake_output = self.discriminator(generated_ids.detach())
fake_loss = self.disc_criterion(fake_output, torch.zeros_like(fake_output))
disc_loss = real_loss + fake_loss
disc_loss.backward()
self.disc_optimizer.step()
discriminator_reward = fake_output_for_generator.mean().item()
return gen_loss.item(), disc_loss.item(), discriminator_reward
# Simulation Environment Class Definition
class SimulationEnvironment:
def __init__(self, agent_start_pos=(50, 50), num_food=100, boundary=100):
self.agent_pos = np.array(agent_start_pos, dtype=float)
self.agent_angle = 0
self.num_food = num_food
self.boundary = boundary
self.food_positions = [self._random_position() for _ in range(num_food)]
self.food_radius = 1.0
self.step_distance = 1.0
self.reward_value = 1.0
def _random_position(self):
return np.array([random.uniform(0, self.boundary), random.uniform(0, self.boundary)])
def _angle_to_food(self):
distances = [np.linalg.norm(food - self.agent_pos) for food in self.food_positions]
nearest_food_idx = np.argmin(distances)
nearest_food = self.food_positions[nearest_food_idx]
delta_x, delta_y = nearest_food - self.agent_pos
angle_to_food = np.degrees(np.arctan2(delta_y, delta_x)) % 360
return angle_to_food, nearest_food_idx, distances[nearest_food_idx]
def reset(self):
self.agent_pos = np.array([self.boundary / 2, self.boundary / 2], dtype=float)
self.agent_angle = 0
self.food_positions = [self._random_position() for _ in range(self.num_food)]
return self._angle_to_food()[0]
def step(self, action_angle):
self.agent_angle = action_angle
dx = self.step_distance * np.cos(np.radians(self.agent_angle))
dy = self.step_distance * np.sin(np.radians(self.agent_angle))
self.agent_pos += np.array([dx, dy])
self.agent_pos = np.clip(self.agent_pos, 0, self.boundary)
angle_to_food, nearest_food_idx, distance_to_food = self._angle_to_food()
reward = 0.0
if distance_to_food <= self.food_radius:
reward = self.reward_value
self.food_positions[nearest_food_idx] = self._random_position()
return angle_to_food, reward
# Teacher data setup for the Discriminator model
def create_teacher_data(config):
teacher_data = {}
for direction, id_value in config["teacher_data_ids"].items():
ids = [id_value] + [0] * (config["num_heart"] - 1) # IDリストを1000次元にパディング
teacher_data[direction] = torch.tensor(ids, dtype=torch.long)
return teacher_data
teacher_data = create_teacher_data(config)
# Training loop
rl_model, generator, discriminator = initialize_models(config)
rl_optimizer, gen_optimizer, disc_optimizer = initialize_optimizers([rl_model, generator, discriminator], config["learning_rate"])
env = SimulationEnvironment()
controller = TrainingController(
rl_model=rl_model,
generator=generator,
discriminator=discriminator,
rl_optimizer=rl_optimizer,
gen_optimizer=gen_optimizer,
disc_optimizer=disc_optimizer,
rl_criterion=nn.MSELoss(),
gen_criterion=nn.BCELoss(),
disc_criterion=nn.BCELoss(),
reward_scale=config["reward_scale"]
)
for episode in range(config["num_episodes"]):
state = torch.tensor([env.reset()], dtype=torch.float32)
rewards = []
states = []
for step in range(config["steps_per_episode"]):
action_vector = generator(state)
action = action_vector[0].item()
angle_to_food, proximity_reward = env.step(action)
state = torch.tensor([angle_to_food], dtype=torch.float32)
target_direction = int(state.item()) % 360
target_language_ids = teacher_data.get(target_direction, teacher_data[0])
gen_loss, disc_loss, discriminator_reward = controller.train_gan(state, target_language_ids)
rewards.append(proximity_reward + config["reward_scale"] * discriminator_reward)
states.append(state)
# エピソード終了後に割引報酬を計算し、RLモデルに渡す
discounted_rewards = compute_discounted_rewards(rewards, config["gamma"])
rl_loss = controller.train_rl(states, discounted_rewards)
print(f"Episode {episode}, Generator Loss: {gen_loss}, Discriminator Loss: {disc_loss}, RL Loss: {rl_loss}, Total Rewards: {sum(rewards)}")