forked from brownan/Rubiks-Cube-Solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
edgetable.c
594 lines (548 loc) · 16.6 KB
/
edgetable.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Copyright © 2009 Andrew Brown <[email protected]>
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "edgetable.h"
#include "cube.h"
#include "stack.h"
/*
* This file holds two edge hashing functions. For any six of the twelve edge
* cubies, there are 42577920 possible permutations. There are two hash
* functions, one for the first 6 edge cubies, and another for the second.
*
* There will be two tables, both are admissible heuristics for solving the
* cube.
*
* I'd like to try and find a generalized way of hashing an arbitrary subset of
* cubies, but I don't think it's feasable. So I just need to write a new
* function for every subset.
*/
/*
* This hashes the edge cubies
* 1, 3, 4, 6, 8, and 9
*/
int edge_hash1(const char *cubestr)
{
char positions[] = {1, 3, 4, 6, 8, 9, 10, 11, 13, 15, 16, 18};
int index = 0;
int pos, rot, num, i;
const char *cubie;
/*
* First split hash space (42577920) into 24 slices:
* 1774080
* then into 22 slices:
* 80640
* and so forth (each cubie eliminates 2 positions):
* 4032
* 224
* 14
* 1
*/
/* first */
cubie = CUBIE(cubestr, 1);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<11; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 12;
/*
* pos is range 0-11
* rot is 0 or 12
* so pos+rot has range 0-23 as expected
*/
index += (pos+rot) * 1774080;
#ifdef DEBUG_ASSERTS
if (pos>11 || (rot != 0 && rot != 12)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
fprintf(stderr, "Pos: %d, Rot: %d\n", pos, rot);
fprintf(stderr, "Cubie[] = [%d, %d]\n", (int)cubie[0], (int)cubie[1]);
cube_print(stderr, cubestr);
fprintf(stderr, "Positions:\n");
for (i=0; i<12; ++i)
fprintf(stderr, "%d ", positions[i]);
index = *((int *)0x0); /* sigsev */
}
#endif
/* second */
cubie = CUBIE(cubestr, 3);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<10; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 11;
/*
* pos is range 0-10
* rot is 0 or 11
* so pos+rot has range 0-21
*/
index += (pos+rot) * 80640;
#ifdef DEBUG_ASSERTS
if (pos>10 || (rot != 0 && rot != 11)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
/* third */
cubie = CUBIE(cubestr, 4);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<9; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 10;
/*
* pos is range 0-9
* rot is 0 or 10
* so pos+rot has range 0-19
*/
index += (pos+rot) * 4032;
#ifdef DEBUG_ASSERTS
if (pos>9 || (rot != 0 && rot != 10)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
/* fourth */
cubie = CUBIE(cubestr, 6);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<8; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 9;
/*
* pos is range 0-8
* rot is 0 or 9
* so pos+rot has range 0-17
*/
index += (pos+rot) * 224;
#ifdef DEBUG_ASSERTS
if (pos>8 || (rot != 0 && rot != 9)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
/* fifth */
cubie = CUBIE(cubestr, 8);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<7; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 8;
/*
* pos is range 0-7
* rot is 0 or 8
* so pos+rot has range 0-15
*/
index += (pos+rot) * 14;
#ifdef DEBUG_ASSERTS
if (pos>7 || (rot != 0 && rot != 8)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
/* sixth */
cubie = CUBIE(cubestr, 9);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<6; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 7;
/*
* pos is range 0-6
* rot is 0 or 7
* so pos+rot has range 0-13
*/
index += (pos+rot);
#ifdef DEBUG_ASSERTS
if (pos>6 || (rot != 0 && rot != 7)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
#ifdef DEBUG_ASSERTS
if (index >= 42577920) {
fprintf(stderr, "\nWARNING: HASH RETURNED %d\n", index);
index = *((int *)0x0); /* sigsev */
}
#endif
return index;
}
/*
* This hashes the edge cubies
* 10, 11, 13, 15, 16, and 18
*/
int edge_hash2(const char *cubestr)
{
char positions[] = {1, 3, 4, 6, 8, 9, 10, 11, 13, 15, 16, 18};
int index = 0;
int pos, rot, num, i;
const char *cubie;
/*
* First split hash space (42577920) into 24 slices:
* 1774080
* then into 22 slices:
* 80640
* and so forth (each cubie eliminates 2 positions):
* 4032
* 224
* 14
* 1
*/
/* first */
cubie = CUBIE(cubestr, 10);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<11; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 12;
/*
* pos is range 0-11
* rot is 0 or 12
* so pos+rot has range 0-23 as expected
*/
index += (pos+rot) * 1774080;
#ifdef DEBUG_ASSERTS
if (pos>11 || (rot != 0 && rot != 12)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
fprintf(stderr, "Pos: %d, Rot: %d\n", pos, rot);
fprintf(stderr, "Cubie[] = [%d, %d]\n", (int)cubie[0], (int)cubie[1]);
cube_print(stderr, cubestr);
fprintf(stderr, "Positions:\n");
for (i=0; i<12; ++i)
fprintf(stderr, "%d ", positions[i]);
index = *((int *)0x0); /* sigsev */
}
#endif
/* second */
cubie = CUBIE(cubestr, 11);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<10; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 11;
/*
* pos is range 0-10
* rot is 0 or 11
* so pos+rot has range 0-21
*/
index += (pos+rot) * 80640;
#ifdef DEBUG_ASSERTS
if (pos>10 || (rot != 0 && rot != 11)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
/* third */
cubie = CUBIE(cubestr, 13);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<9; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 10;
/*
* pos is range 0-9
* rot is 0 or 10
* so pos+rot has range 0-19
*/
index += (pos+rot) * 4032;
#ifdef DEBUG_ASSERTS
if (pos>9 || (rot != 0 && rot != 10)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
/* fourth */
cubie = CUBIE(cubestr, 15);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<8; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 9;
/*
* pos is range 0-8
* rot is 0 or 9
* so pos+rot has range 0-17
*/
index += (pos+rot) * 224;
#ifdef DEBUG_ASSERTS
if (pos>8 || (rot != 0 && rot != 9)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
/* fifth */
cubie = CUBIE(cubestr, 16);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<7; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 8;
/*
* pos is range 0-7
* rot is 0 or 8
* so pos+rot has range 0-15
*/
index += (pos+rot) * 14;
#ifdef DEBUG_ASSERTS
if (pos>7 || (rot != 0 && rot != 8)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
/* sixth */
cubie = CUBIE(cubestr, 18);
num = cubie[0]; /* position id on the cube */
/* find its index in the positions array */
pos = 0;
while (num != positions[pos])
++pos;
/* remove that pos from the array */
for (i=pos; i<6; ++i)
positions[i] = positions[i+1];
rot = cubie[1] * 7;
/*
* pos is range 0-6
* rot is 0 or 7
* so pos+rot has range 0-13
*/
index += (pos+rot);
#ifdef DEBUG_ASSERTS
if (pos>6 || (rot != 0 && rot != 7)) {
fprintf(stderr, "\nWARNING: BAD POS/ROT\n");
index = *((int *)0x0); /* sigsev */
}
#endif
#ifdef DEBUG_ASSERTS
if (index >= 42577920) {
fprintf(stderr, "\nWARNING: HASH RETURNED %d\n", index);
index = *((int *)0x0); /* sigsev */
}
#endif
return index;
}
/*
* Similar to corner_generate, this generates the hash table for the edge
* cubies. There are two edge cubie tables to choose from. The tablenum
* variable should specify which table is being generated. Either 1 or 2.
*
* Mostly copied from corner_generate
*/
int edge_generate(unsigned char *table, const char *solution, int tablenum)
{
stacktype *stack;
/*
* qdata is a struct, holding cube string 'cube_data',
* an int representing the turn that was made, 'turn',
* and an int representing the distance, 'distance'
*/
qdata current;
int count = 0; /* total hashed */
int popcount = 0; /* total traversed */
int hash;
int i;
unsigned char *instack;
int depth;
cube_type turned;
/* Which edge hashing function to use */
int (*hashfunc)(const char *);
switch (tablenum) {
case 1:
hashfunc = edge_hash1;
break;
case 2:
hashfunc = edge_hash2;
break;
default:
return 0;
}
/* Create a stack */
stack = STACK_NEW;
/*
* create a temporary table to keep track of the stack This holds the value
* of each item that has been added to the stack, and its distance. This
* way, we know if we encounter the same node but at a further distance we
* can throw it away. This heuristic cuts down on processing time by quite
* a bit, and is only as time intensive as the hashing algorithm, at the
* expense of using more memory.
*/
instack = EDGE_TABLE_NEW;
depth = 0;
while (count < 42577920)
{
/* if stack is empty, go up a level */
if (stack->length == 0)
{
stack_push(stack, solution, -1, 0);
depth++;
/* clear out instack table */
EDGE_TABLE_CLEAR(instack);
}
/* Pop the first item off, put it in current */
stack_peek_cube(stack, &(current.cube_data));
current.turn = stack_peek_turn(stack);
current.distance = stack_peek_distance(stack);
stack_pop(stack);
popcount++;
/* Print out status every 2^18 pops (approx every 200k)*/
if ((popcount & 0777777) == 0777777) {
fprintf(stderr, "\r%d/42577920 hashed, on level:%d/10, total traversed:%d", count, depth, popcount);
}
#ifdef PROFILE_MODE
/* For profiling, so I don't have to wait an hour to gather data */
if (count == 10000000) {
return 0;
}
#endif
/* Look at all turns of the current cube */
for (i=0; i<18; i++) {
/* Determine if we should skip this turn */
if (current.turn != -1 && SHOULDIAVOID(i, current.turn)) {
continue;
}
memcpy(turned, current.cube_data, CUBELEN);
cube_turn(turned, i);
/*
* Check if turned is in instack and is greater than
* or equal to the depth. If so, skip
*/
hash = hashfunc(turned);
if (hash&1 ? \
((instack[(hash-1)/2] >> 4) <= (current.distance+1)) : \
((instack[hash/2] & 15) <= (current.distance+1))) {
continue;
}
/* add to instack */
if (hash&1) {
instack[(hash-1)/2] &= 15;
instack[(hash-1)/2] |= (current.distance+1) << 4;
} else {
instack[hash/2] &= 15<<4;
instack[hash/2] |= (current.distance+1);
}
if (current.distance+1 == depth) {
/*
* if item is at our current target depth, add it to hash table
*/
if (hash & 1) {
if (!(table[(hash-1)/2] >> 4)) {
table[(hash-1)/2] |= (current.distance+1) << 4;
count++;
} else {
/* A duplicate, skip */
}
} else {
if (!(table[hash/2]&15)) {
table[hash/2] |= current.distance + 1;
count++;
} else {
/* a duplicate */
}
}
} else {
/* Add to real stack */
stack_push(stack, turned, i, current.distance+1);
}
}
}
/*
* This sets the value for the solved cube to 0, as it should be. This
* exceptional case comes about because there are moves which don't change
* the hash (this table only involves 6 of the 12 edge cubies.) Therefore,
* an edge is turned, and while the edge cubies are still "solved", an
* entry is inserted in the table with distance 1, which ruins the
* admissibility of the heuristic.
*
* This wasn't an issue with the corner table because every turn from the
* solved state brought it to an unsolved state (unlike this table). So
* the 18 cubes that are 1 position away from solved go into the 'instack'
* table, which prevents the search from coming back to the solved state.
* The 18 moves around the solved state form a kind of barrier.
*/
hash = hashfunc(cube_solved);
if (hash & 1) {
/* zero out upper bits */
table[(hash-1)/2] &= 15;
} else {
/* zero out lower bits */
table[hash/2] &= (15<<4);
}
free(instack);
while(stack->length) {
stack_pop(stack);
}
free(stack);
fprintf(stderr, "\n");
return 1;
}
int edge_write(unsigned char *edgetable, FILE *output)
{
int written;
written = fwrite(edgetable, 1, 21288960, output);
if (written < 21288960)
return 0;
return 1;
}
int edge_read(unsigned char *edgetable, FILE *input)
{
int read;
read = fread(edgetable, 1, 21288960, input);
if (read < 21288960) {
return 0;
}
return 1;
}