forked from bax24/Alzheimer-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
196 lines (158 loc) · 6.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import SimpleITK as sitk
import matplotlib.pyplot as plt
import numpy as np
import os
import torch
from model import NetworkB
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from torch import optim
import argparse
import torch.nn as nn
from model import NetworkA
import trainModelCNN as f
import trainModel as t
from collections import Counter
import time
def get_data(train_size, disp=False):
# Training dataset
MRI_train = []
labels_train = []
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(torch.Tensor(mean))
])
# Testing dataset
MRI_test = []
labels_test = []
diagnosis = ['AD', 'CN']
for diag in diagnosis:
index = 0
for path, dirs, files in os.walk(os.path.join(args.data, diag)):
# Divide both classes evenly between train and test dataset
upper_bound_train = int(len(files) * train_size)
for filename in files:
if filename == '.DS_Store':
continue
image = os.path.join(args.data, diag, filename)
sitk_image = sitk.ReadImage(image)
# transform into a numpy array
MRI = sitk.GetArrayFromImage(sitk_image)
# add the Channel dimension
# MRI = MRI[np.newaxis, ...]
# Put sitk in right dataset
if index < upper_bound_train:
# Train section
MRI = transform(MRI)
MRI_train.append(MRI)
labels_train.append(diag)
index += 1
else:
MRI_test.append(MRI)
labels_test.append(diag)
if disp:
print("Training : ", Counter(labels_train))
print("Testing : ", Counter(labels_test))
labels_train = torch.tensor([1 if x == 'AD' else 0 for x in labels_train])
labels_test = torch.tensor([1 if x == 'AD' else 0 for x in labels_test])
train_db = list(zip(MRI_train, labels_train))
test_db = list(zip(MRI_test, labels_test))
return train_db, test_db
class MRIDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.__MRI = []
self.__label = []
self.neg = 'CN'
self.pos = 'AD'
self.root_dir = root_dir
self.transform = transform
label_dict = {self.neg: 0, self.pos: 1}
for diag in ['AD', 'CN']:
path = os.path.join(root_dir, diag)
for _, _, files in os.walk(path):
for filename in files:
if filename == ".DS_Store":
continue
self.__MRI.append(os.path.join(root_dir, diag, filename))
self.__label.append(label_dict[diag])
def __getitem__(self, index):
mri_image = sitk.ReadImage(self.__MRI[index])
mri_image = sitk.GetArrayFromImage(mri_image)
label = self.__label[index]
return mri_image, label
def __len__(self):
return len(self.__MRI)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='AD Classifier')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--batches', type=int, default=10, metavar='N',
help='input batch size for training (default: 10)')
parser.add_argument('--data', type=str, default='S_C/', metavar='str',
help='folder that contains data (default: S_C)')
parser.add_argument('--lr', type=float, default=0.001,
help='the learning rate (default: 0.001')
parser.add_argument('--network', type=str, default='CNN', metavar='str',
help='the network name (default: CNN)')
parser.add_argument('--optim', type=str, default='ADAM', metavar='str',
help='the optimizer')
args = parser.parse_args()
print("Args: ", args)
id = args.network + str(args.epochs) + str('-') + str(args.batches) + str('-') + args.optim[0]
# GPU and CUDA
print("The number of GPUs:", torch.cuda.device_count())
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
# ----------------
# Define my model
# ----------------
# 3D CNN
if args.network == 'CNN':
model = NetworkA(init_kernel=32, device=device)
else:
model = NetworkB(in_channel=1, out_channel=1, img_size=(128, 128, 96), pos_embed='conv')
model.to(device)
if torch.cuda.device_count() > 0:
print("Using MultiGPUs")
model = nn.DataParallel(model)
# Define my optimizer
if args.optim == 'ADAM':
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=0.0005)
else:
optimizer = optim.RMSprop(model.parameters(), lr=args.lr)
# Define my Loss
loss = nn.BCELoss() # Not used for ViT or CNN for now
# Downloading datasets
dataset = MRIDataset(root_dir=args.data, transform=transforms.ToTensor())
train_size = int(0.7 * len(dataset))
test_size = len(dataset) - train_size
train_set, test_set = torch.utils.data.random_split(dataset, [train_size, test_size])
train_loader = DataLoader(train_set, batch_size=args.batches, shuffle=True)
test_loader = DataLoader(test_set, batch_size=args.batches, shuffle=True)
train_loss = []
test_loss = []
for epoch in range(1, args.epochs):
print("--------------------")
print("EPOCH " + str(epoch))
print("--------------------")
total_loss = f.train(model, train_loader, optimizer, epoch, device)
train_loss.append(total_loss)
print("\nTraining ok ! With a loss of ", total_loss)
total_loss = f.test(model, test_loader, epoch, device)
test_loss.append(total_loss)
print("Testing ok ! With a loss of \n", total_loss)
# Plotting Testing loss
name = str('E') + str('_') + id
plt.Figure(figsize=(13, 5))
plt.title('Evolution of Loss curves')
ax = plt.gca()
ax.set_ylim([0, 30])
plt.plot(train_loss, label='Training')
plt.plot(test_loss, label='Testing')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(loc="upper right")
plt.savefig('Figures/' + name)