forked from bax24/Alzheimer-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
159 lines (138 loc) · 4.46 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple, Union
from monai.networks.nets import ViT
def conv_block_3d(in_dim, out_dim, stride=1, padding=1, batch_norm=True):
'''
A standard 3d Conv block
:param in_dim: in_channels
:param out_dim: out_channels
:param stride: stride
:param padding: padding
:param batch_norm: whether use bn
:return: model itself
'''
if batch_norm:
conv_block = nn.Sequential(
nn.Conv3d(in_dim, out_dim, kernel_size=3, stride=stride, padding=padding),
# nn.ReLU(),
nn.BatchNorm3d(out_dim),
nn.ReLU()
)
else:
conv_block = nn.Sequential(
nn.Conv3d(in_dim, out_dim, kernel_size=3, stride=stride, padding=padding),
nn.ReLU()
)
return conv_block
def baseline_conv_layers(init_kernel=16):
'''
The network baseline
:param init_kernel:
:return: model itself
'''
bl_conv = nn.Sequential(
# Conv1
conv_block_3d(1, init_kernel),
nn.MaxPool3d(2, stride=2),
)
return bl_conv
# for network A, as A have 2 input channels
def baseline_conv_layers_A(init_kernel=16):
'''
The network baseline
:param init_kernel:
:return: model itself
'''
bl_conv = nn.Sequential(
# Conv1
conv_block_3d(1, init_kernel),
nn.MaxPool3d(2, stride=2),
# Conv2
conv_block_3d(init_kernel, 2 * init_kernel),
nn.MaxPool3d(2, stride=2),
# Conv3
conv_block_3d(2 * init_kernel, 4 * init_kernel),
conv_block_3d(4 * init_kernel, 4 * init_kernel),
nn.MaxPool3d(2, stride=2),
# Conv4
conv_block_3d(4 * init_kernel, 8 * init_kernel),
conv_block_3d(8 * init_kernel, 8 * init_kernel),
nn.MaxPool3d(2, stride=2),
# Conv5
conv_block_3d(8 * init_kernel, 8 * init_kernel),
conv_block_3d(8 * init_kernel, 8 * init_kernel),
nn.MaxPool3d(2, stride=2)
)
return bl_conv
class NetworkA(nn.Module):
def __init__(self, init_kernel, device, n_output=2):
super(NetworkA, self).__init__()
self.init_kernel = init_kernel
self.device = device
self.n_output = n_output
# share conv kernels
self.conv = baseline_conv_layers_A(init_kernel)
# fc layers
# 3 * 3 * 1 * 8 * kernel = 2304 --> 512
# kernel * 384 = 12288
self.fc = nn.Sequential(
nn.Linear(384 * init_kernel, 2304),
nn.Dropout(),
nn.Linear(2304, 512),
nn.Linear(512, 10),
nn.Dropout(),
nn.Linear(10, n_output),
)
def forward(self, inputs):
mri, label = inputs
# [B, 48, 96, 96] -> [B, 1, 48, 96, 96]
mri = mri.unsqueeze(1)
#pet = pet.unsqueeze(1)
#img = torch.cat([mri, pet], 1)
img_feat = self.conv(mri)
img_feat = img_feat.view(mri.size(0), -1)
fc_out = self.fc(img_feat)
# 在tf的版本里是softmax
output = F.log_softmax(fc_out)
return output
class NetworkB(nn.Module):
def __init__(self,
in_channel: int,
out_channel: int,
img_size: Tuple[int, int, int],
feature_size: int = 16,
hidden_size: int = 768,
mlp_dim: int = 3072,
num_heads: int = 12,
pos_embed: str = "perceptron",
norm_name: Union[Tuple, str] = "instance",
conv_block: bool = False,
res_block: bool = True,
num_classes: int = 2,
dropout_rate: float = 0.0,
):
super().__init__()
self.patch_size = (16, 16, 16)
self.num_layers = 12
self.classification = True
self.vit = ViT(
in_channels=in_channel,
img_size=img_size,
patch_size=self.patch_size,
hidden_size=hidden_size,
mlp_dim=mlp_dim,
num_layers=self.num_layers,
num_heads=num_heads,
pos_embed=pos_embed,
classification=self.classification,
num_classes=num_classes,
dropout_rate=dropout_rate,
)
self.layer_out = nn.Sigmoid()
def forward(self, input):
x, hidden_states_out = self.vit(input)
# output = F.log_softmax(x, dim=1)
output = self.layer_out(x)
return output