forked from bax24/Alzheimer-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainModelCNN.py
70 lines (59 loc) · 2.29 KB
/
trainModelCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import torch.nn.functional as F
def train(model, train_loader, optimizer, epoch, device):
model.train()
total_loss = 0
correct = 0
for batch_idx, (mri, label) in enumerate(train_loader):
mri, label = mri.to(device), label.to(device)
data = (mri.type(torch.FloatTensor), label.type(torch.FloatTensor))
output = model(data)
loss = F.nll_loss(output, label, reduction='mean')
# Checking batch
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(label.view_as(pred)).sum().item()
total_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
#if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * 10, len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
print("Correct = ", correct)
return total_loss
def test(model, test_loader, epoch, device):
model.eval()
test_loss = 0
correct = 0
TP = 0
TN = 0
FP = 0
FN = 0
with torch.no_grad():
for mri, label in test_loader:
mri, label = mri.to(device), label.to(device)
data = (mri.type(torch.FloatTensor), label.type(torch.FloatTensor))
output = model(data)
test_loss += F.nll_loss(output, label, reduction='mean').item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(label.view_as(pred)).sum().item()
truths = pred.eq(label.view_as(pred))
for i, right in enumerate(truths):
if right:
if label[i]:
TP += 1
else:
TN += 1
else:
if label[i]:
FN += 1
else:
FP += 1
test_loss_mean = test_loss / len(test_loader.dataset)
print('\nTest {}: Average loss: {:.6f}, Accuracy: {}/{} ({:.4f}%)'.format(
epoch, test_loss_mean, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
print('\nTrue positive :{}, True negative :{}, False positive :{}, False negative :{}'.format(
TP, TN, FP, FN))
return test_loss