forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmri_corr_imperf_spoil.m
150 lines (120 loc) · 6.15 KB
/
hmri_corr_imperf_spoil.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
function hmri_corr_imperf_spoil(job)
%==========================================================================
% PURPOSE
% Compute coefficients to correct for the effect of imperfect spoiling on
% T1 estimation as described in (Preibisch & Deichmann, MRM 2009).
%
% Numerical simulations are performed using the EPG formalism described in
% Malik et al., MRM 2017 and available here:
% https://github.com/mriphysics/EPG-X
%
% The parameters used for the simulation and the resulting correction
% factors are written to a JSON file in the output folder specified by the
% user.
%==========================================================================
hmri_log(sprintf('\t--- Calculating Imperfect Spoiling Correction Coefficients ---'));
%% ***********************************************%%
% 1./ Numerical simulations with EPG
%*************************************************%%
%%
% Get sequence parameters
FA = job.seq_params.FA_deg; % Flip angles [deg]
TR = job.seq_params.TR_ms; % [ms]
Phi0 = job.seq_params.Phi0_deg; % [deg]
B1range = job.seq_params.B1range_percent/100; % convert such that 100% = 1
Gdur = job.seq_params.Gdur_ms; % [ms]
Gamp = job.seq_params.Gamp_mT_per_m; % [[mT/m]
if length(Gdur)~= length (Gamp)
error('The vectors of gradient durations and amplitudes must have the same length!')
end
%% Get tissue parameters
T1range = job.tissue_params.T1range_ms; %[ms]
T2range = job.tissue_params.T2range_ms; % [ms]
D = job.tissue_params.D_um2_per_ms; % [um^2/ms]
%% Build structure "diff" to account for diffusion effect
diff = struct;
diff.D = D*1e-9;
diff.G = Gamp;
diff.tau = Gdur;
%% Run EPG simulation
nT1 = length(T1range);
nT2 = length(T2range);
nB1 = length(B1range);
S1 = zeros([nT1 nT2 nB1]);
S2 = zeros([nT1 nT2 nB1]);
hmri_log(sprintf('\t-------- Simulating signals'));
for T1val = 1 : nT1 % loop over T1 values, can use parfor for speed
T1 = T1range(T1val);
npulse = floor(15*T1/min(TR)); % To ensure steady state signal
for T2val = 1 : nT2
T2 = T2range(T2val);
for B1val = 1 : nB1 % loop over B1+ values
B1eff = B1range(B1val);
%%% make train of flip angles and their phases
phi_train = RF_phase_cycle(npulse,Phi0); % phase of the RF pulses
alpha_train1 = d2r(FA(1).*B1eff)*ones([1 npulse]); % flip angles of the PDw acquisitions
alpha_train2 = d2r(FA(2).*B1eff)*ones([1 npulse]); % flip angles of the T1w acquisitions
% Calculate signals via EPG:
%PDw
F0 = EPG_GRE(alpha_train1, phi_train, TR(1), T1, T2, 'diff', diff);
S1(T1val,T2val,B1val) = (abs(F0(end)));
%T1w
F0 = EPG_GRE(alpha_train2, phi_train, TR(2), T1, T2, 'diff', diff);
S2(T1val,T2val,B1val) = (abs(F0(end)));
end
end
end
%% ***********************************************%%
% 2./ Fitting T1=A(B1eff)+B(B1eff)*T1app
%*************************************************%%
hmri_log(sprintf('\t-------- Determining Coefficients'));
ABcoeff = zeros(2, nB1);
T1app = zeros(nB1, nT1, nT2);
for B1val = 1 : nB1
B1eff = B1range(B1val);
% Calculate T1app, accounting for B1+
T1app(B1val,:,:) = 1./hmri_calc_R1(...
struct('data',S1(:,:,B1val),'fa',d2r(FA(1)),'TR',TR(1),'B1',B1eff),...
struct('data',S2(:,:,B1val),'fa',d2r(FA(2)),'TR',TR(2),'B1',B1eff),...
job.small_angle_approx);
% build matrix X with column of ones and column of T1app
X = ones([nT1*nT2 2]);
X(:,2) = T1app(B1val,:);
ABcoeff(:, B1val) = pinv(X)*repmat(T1range, [1 nT2]).';
end
%% *********************************************************%%
% 3./ Fitting A=P(B1eff) and B=P(B1eff) with 2nd degree polynom
%***********************************************************%%
polyCoeffA = polyfit(B1range, ABcoeff(1,:), 2);
polyCoeffB = polyfit(B1range, ABcoeff(2,:), 2);
%% *********************************************************%%
% 4./ Compute RMSE on T1app and T1
%***********************************************************%%
T1app = T1app(:,:);
T1corr = repmat(polyval(polyCoeffA, B1range).',[1 nT1*nT2])+ repmat(polyval(polyCoeffB, B1range).',[1 nT1*nT2]).*T1app;
T1_Corr_Err = (T1corr - repmat(T1range, [nB1 nT2]))./repmat(T1range, [nB1 nT2])*100;
T1_App_Err = (T1app - repmat(T1range, [nB1 nT2]))./repmat(T1range, [nB1 nT2])*100;
RMSE_Corr = sqrt(mean(T1_Corr_Err(:).^2));
RMSE_App = sqrt(mean(T1_App_Err(:).^2));
%% *********************************************************%%
% 5./ Write parameters and correction factors in a json file
% in the selected output directory
%***********************************************************%%
hmri_log(sprintf('\t-------- Writing results\n'));
Results.Input = job;
Results.Output.P2_a = round(polyCoeffA,4);
Results.Output.P2_b = round(polyCoeffB,4);
Results.Output.small_angle_approx = job.small_angle_approx;
Results.Output.RMSE_percent.T1app=round(RMSE_App,3);
Results.Output.RMSE_percent.T1corr=round(RMSE_Corr,3);
Results.ToCopy{1} =['hmri_def.MPMacq_set.names{NN} = ''' job.prot_name ''';' ];
Results.ToCopy{end+1}=['hmri_def.MPMacq_set.tags{NN} = ''' strrep(job.prot_name,' ','') ''';'];
Results.ToCopy{end+1}=['hmri_def.MPMacq_set.vals{NN} = [' num2str([TR FA]) '];'];
Results.ToCopy{end+1}=['hmri_def.imperfectSpoilCorr.' strrep(job.prot_name,' ','') '.tag = ''' strrep(job.prot_name,' ','') ''';' ];
Results.ToCopy{end+1}=['hmri_def.imperfectSpoilCorr.' strrep(job.prot_name,' ','') '.P2_a = [' num2str(round(polyCoeffA,4)) '];'];
Results.ToCopy{end+1}=['hmri_def.imperfectSpoilCorr.' strrep(job.prot_name,' ','') '.P2_b = [' num2str(round(polyCoeffB,4)) '];'];
Results.ToCopy{end+1}=['hmri_def.imperfectSpoilCorr.' strrep(job.prot_name,' ','') '.small_angle_approx = ' mat2str(job.small_angle_approx) ';'];
Results.ToCopy{end+1}=['hmri_def.imperfectSpoilCorr.' strrep(job.prot_name,' ','') '.enabled = hmri_def.imperfectSpoilCorr.enabled;'];
results_filename = fullfile(job.outdir,[strrep(job.prot_name,' ',''),'.json']);
spm_jsonwrite(results_filename{1},Results,struct('indent','\t'));
end