forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmri_run_proc_smooth.m
109 lines (93 loc) · 3.67 KB
/
hmri_run_proc_smooth.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
function out = hmri_run_proc_smooth(job)
% Function to run the smoothing/weighted averaging over a bunch of
% subjects, as defined in the batch interface.
% Data are selected in a 'many subject' style, i.e. all the images of one
% type are selected from many subjects at once!
%
% The 'out' structure is organized as a structure with 2 fileds
% .tc : cell-array of size {n_TCs x n_pams}. Each element tc{ii,jj} is a
% cell array {n_subj x 1} with each subject's smoothed data for
% the ii^th TC and jj^th MPM
% .smwc : cell-array of size {n_TCs x1}. Each element smwc{ii} is a char
% array (n_subj x 1) with each subject's smooth modulated warped
% ii^th tissue class
%_______________________________________________________________________
% Copyright (C) 2017 Cyclotron Research Centre
% Written by Christophe Phillips
% grab a few numbers, assuming data have been checked before
n_pams = numel(job.vols_pm); % #parametric image types
n_TCs = numel(job.vols_mwc); % #tissue classes
n_subj = numel(job.vols_pm{1}); % #subjects
% disp([n_pams n_TCs n_subj])
% Define output folder for processing function
output = struct('outDir', [], 'option', 'same'); % Default -> keep same as input data
if isfield(job.output,'outdir') % -> everything in the same
output.outDir = job.output.outdir{1};
output.option = 'allin';
elseif isfield(job.output,'outdir_ps') % -> per suject organization
output.outDir = job.output.outdir_ps{1};
output.option = 'subjspec';
end
% Find the list of tissue classes considered
l_TC = zeros(1,n_TCs);
for ii = 1:n_TCs
tmp = regexp(job.vols_mwc{ii}{1},'mwc(\d)', 'tokens');
l_TC(ii) = str2num(tmp{1}{1}); %#ok<*ST2NM>
end
% Get the TPM file, without any number
fn_TPM_i = cell(n_TCs,1);
for ii=1:n_TCs
fn_TPM_i{ii} = spm_file(job.tpm{1},'number',l_TC(ii));
end
fn_TPM = char(fn_TPM_i);
% Loop over all the subjects and process them one at a time
out.tc = cell(n_TCs,n_pams);
out.smwc = cell(n_TCs,1);
for i_subj = 1:n_subj
fn_wMPM = cell(n_pams,1);
for jj = 1:n_pams
fn_wMPM{jj} = job.vols_pm{jj}{i_subj};
end
[pth,~,~] = fileparts(fn_wMPM{1});
pth_out = get_output_path(pth,output);
fn_mwTC = cell(n_TCs,1);
for jj = 1:n_TCs
fn_mwTC{jj} = job.vols_mwc{jj}{i_subj};
end
[fn_out, fn_smwc] = hmri_proc_MPMsmooth( ...
char(fn_wMPM), char(fn_mwTC), fn_TPM, ...
job.fwhm, l_TC, pth_out);
for jj = 1:n_TCs
for kk = 1:n_pams
out.tc{jj,kk}{i_subj,1} = fn_out{kk}(jj,:); %#ok<*STRNU>
end
out.smwc{jj}{i_subj,1} = fn_smwc(jj,:);
end
end
end
%__________________________________________________________________________
%__________________________________________________________________________
function pth = get_output_path(pth,output)
% Generate desired output path.
if ~isempty(output)
switch output.option
case 'same'
% no change to output path
case 'allin'
% put everythin the same predefined folder
pth = output.outDir;
case 'subjspec'
% keep per-subject organisation in predefined folder
% and create it if necessary
l_fsep = strfind(pth,filesep);
lp_fsep = [0 l_fsep length(pth)+1];
dn_subj = pth(lp_fsep(end-1)+1:lp_fsep(end)-1);
pth = fullfile(output.outDir,dn_subj);
otherwise
% inconsistent specification -> no change to output path
fprintf('\nWrong output path specification, use input data path.\n');
end
if ~exist(pth,'dir'), mkdir(pth); end
end
end
%__________________________________________________________________________