forked from Lornatang/SRGAN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
251 lines (201 loc) · 8.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import math
from typing import Any
import torch
from torch import Tensor
from torch import nn
from torch.nn import functional as F_torch
from torchvision import models
from torchvision import transforms
from torchvision.models.feature_extraction import create_feature_extractor
__all__ = [
"SRResNet", "Discriminator",
"srresnet_x4", "discriminator", "content_loss",
]
class SRResNet(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
channels: int,
num_rcb: int,
upscale_factor: int
) -> None:
super(SRResNet, self).__init__()
# Low frequency information extraction layer
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, channels, (9, 9), (1, 1), (4, 4)),
nn.PReLU(),
)
# High frequency information extraction block
trunk = []
for _ in range(num_rcb):
trunk.append(_ResidualConvBlock(channels))
self.trunk = nn.Sequential(*trunk)
# High-frequency information linear fusion layer
self.conv2 = nn.Sequential(
nn.Conv2d(channels, channels, (3, 3), (1, 1), (1, 1), bias=False),
nn.BatchNorm2d(channels),
)
# zoom block
upsampling = []
if upscale_factor == 2 or upscale_factor == 4 or upscale_factor == 8:
for _ in range(int(math.log(upscale_factor, 2))):
upsampling.append(_UpsampleBlock(channels, 2))
elif upscale_factor == 3:
upsampling.append(_UpsampleBlock(channels, 3))
self.upsampling = nn.Sequential(*upsampling)
# reconstruction block
self.conv3 = nn.Conv2d(channels, out_channels, (9, 9), (1, 1), (4, 4))
# Initialize neural network weights
self._initialize_weights()
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
# Support torch.script function
def _forward_impl(self, x: Tensor) -> Tensor:
out1 = self.conv1(x)
out = self.trunk(out1)
out2 = self.conv2(out)
out = torch.add(out1, out2)
out = self.upsampling(out)
out = self.conv3(out)
out = torch.clamp_(out, 0.0, 1.0)
return out
def _initialize_weights(self) -> None:
for module in self.modules():
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.BatchNorm2d):
nn.init.constant_(module.weight, 1)
class Discriminator(nn.Module):
def __init__(self) -> None:
super(Discriminator, self).__init__()
self.features = nn.Sequential(
# input size. (3) x 96 x 96
nn.Conv2d(3, 64, (3, 3), (1, 1), (1, 1), bias=True),
nn.LeakyReLU(0.2, True),
# state size. (64) x 48 x 48
nn.Conv2d(64, 64, (3, 3), (2, 2), (1, 1), bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, True),
nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1), bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, True),
# state size. (128) x 24 x 24
nn.Conv2d(128, 128, (3, 3), (2, 2), (1, 1), bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, True),
nn.Conv2d(128, 256, (3, 3), (1, 1), (1, 1), bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, True),
# state size. (256) x 12 x 12
nn.Conv2d(256, 256, (3, 3), (2, 2), (1, 1), bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, True),
nn.Conv2d(256, 512, (3, 3), (1, 1), (1, 1), bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, True),
# state size. (512) x 6 x 6
nn.Conv2d(512, 512, (3, 3), (2, 2), (1, 1), bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, True),
)
self.classifier = nn.Sequential(
nn.Linear(512 * 6 * 6, 1024),
nn.LeakyReLU(0.2, True),
nn.Linear(1024, 1),
)
def forward(self, x: Tensor) -> Tensor:
# Input image size must equal 96
assert x.shape[2] == 96 and x.shape[3] == 96, "Image shape must equal 96x96"
out = self.features(x)
out = torch.flatten(out, 1)
out = self.classifier(out)
return out
class _ResidualConvBlock(nn.Module):
def __init__(self, channels: int) -> None:
super(_ResidualConvBlock, self).__init__()
self.rcb = nn.Sequential(
nn.Conv2d(channels, channels, (3, 3), (1, 1), (1, 1), bias=False),
nn.BatchNorm2d(channels),
nn.PReLU(),
nn.Conv2d(channels, channels, (3, 3), (1, 1), (1, 1), bias=False),
nn.BatchNorm2d(channels),
)
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.rcb(x)
out = torch.add(out, identity)
return out
class _UpsampleBlock(nn.Module):
def __init__(self, channels: int, upscale_factor: int) -> None:
super(_UpsampleBlock, self).__init__()
self.upsample_block = nn.Sequential(
nn.Conv2d(channels, channels * upscale_factor * upscale_factor, (3, 3), (1, 1), (1, 1)),
nn.PixelShuffle(2),
nn.PReLU(),
)
def forward(self, x: Tensor) -> Tensor:
out = self.upsample_block(x)
return out
class _ContentLoss(nn.Module):
"""Constructs a content loss function based on the VGG19 network.
Using high-level feature mapping layers from the latter layers will focus more on the texture content of the image.
Paper reference list:
-`Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network <https://arxiv.org/pdf/1609.04802.pdf>` paper.
-`ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks <https://arxiv.org/pdf/1809.00219.pdf>` paper.
-`Perceptual Extreme Super Resolution Network with Receptive Field Block <https://arxiv.org/pdf/2005.12597.pdf>` paper.
"""
def __init__(
self,
feature_model_extractor_node: str,
feature_model_normalize_mean: list,
feature_model_normalize_std: list
) -> None:
super(_ContentLoss, self).__init__()
# Get the name of the specified feature extraction node
self.feature_model_extractor_node = feature_model_extractor_node
# Load the VGG19 model trained on the ImageNet dataset.
model = models.vgg19(weights=models.VGG19_Weights.IMAGENET1K_V1)
# Extract the thirty-sixth layer output in the VGG19 model as the content loss.
self.feature_extractor = create_feature_extractor(model, [feature_model_extractor_node])
# set to validation mode
self.feature_extractor.eval()
# The preprocessing method of the input data.
# This is the VGG model preprocessing method of the ImageNet dataset.
self.normalize = transforms.Normalize(feature_model_normalize_mean, feature_model_normalize_std)
# Freeze model parameters.
for model_parameters in self.feature_extractor.parameters():
model_parameters.requires_grad = False
def forward(self, sr_tensor: Tensor, gt_tensor: Tensor) -> Tensor:
# Standardized operations
sr_tensor = self.normalize(sr_tensor)
gt_tensor = self.normalize(gt_tensor)
sr_feature = self.feature_extractor(sr_tensor)[self.feature_model_extractor_node]
gt_feature = self.feature_extractor(gt_tensor)[self.feature_model_extractor_node]
# Find the feature map difference between the two images
loss = F_torch.mse_loss(sr_feature, gt_feature)
return loss
def srresnet_x4(**kwargs: Any) -> SRResNet:
model = SRResNet(upscale_factor=4, **kwargs)
return model
def discriminator() -> Discriminator:
model = Discriminator()
return model
def content_loss(**kwargs: Any) -> _ContentLoss:
content_loss = _ContentLoss(**kwargs)
return content_loss