-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConditionalGenerator.py
41 lines (36 loc) · 1.65 KB
/
ConditionalGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from audioop import bias
import torch
import torch.nn as nn
import torch.nn.functional as F
class GeneradorCondicional(nn.Module):
def __init__(self, noiseDim, condDim, device = 'cuda', numChan=3, hiddenDim=64):
super(GeneradorCondicional, self).__init__()
self.inDim = noiseDim
self.condDim = condDim
self.device = device
self.gen = nn.Sequential(
self.generar_bloque_generador(self.inDim + self.condDim, hiddenDim * 8, device), # 3 out
self.generar_bloque_generador(hiddenDim * 8, hiddenDim * 4, device, kernTam=4, stride=1), # 6 out
self.generar_bloque_generador(hiddenDim * 4, hiddenDim * 2, device), # 13 out
self.generar_bloque_generador(hiddenDim * 2, hiddenDim, device ), # 27 out
self.generar_bloque_generador(hiddenDim, numChan, device, kernTam=4, ultimaCapa=True), # 55 out
)
def forward(self, input):
x = input.view(len(input), self.inDim + self.condDim, 1, 1)
return self.gen(x)
def getNoiseDim(self):
return self.inDim
def getCondDim(self):
return self.condDim
def generar_bloque_generador(self, inChan, outChan, device = 'cuda', kernTam=3, stride=2, ultimaCapa=False):
if ultimaCapa:
return nn.Sequential(
nn.ConvTranspose2d(inChan, outChan, kernTam, stride).to(device),
nn.Tanh().to(device),
)
else:
return nn.Sequential(
nn.ConvTranspose2d(inChan, outChan, kernTam, stride).to(device),
nn.BatchNorm2d(outChan).to(device),
nn.ReLU(inplace=True).to(device),
)