-
Notifications
You must be signed in to change notification settings - Fork 0
/
scc_category.m
55 lines (35 loc) · 1.4 KB
/
scc_category.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function [ class_id ] = scc_category( X,Y,K )
[p1 n] = size(X);
%% Dummy Coding
K2 = max(Y);
Y_mat = zeros(n,K2);
for j = 1:n
Y_mat(j,Y(j)) = 1;
end
%%
eucli_dis = norm(X - mean(X,2),'fro')^2;
logit_vec = log ( mean(Y_mat,1) ./ (1 - mean(Y_mat,1)) ) ;
null_dev_Y = sum(sum( - Y_mat .* logit_vec )) + n * sum(log( 1 + exp( logit_vec) ) ) ;
null_dev_Y = 2 * null_dev_Y;
ratio = (eucli_dis) / ( (null_dev_Y) + (eucli_dis ));
fs_weight = [ones(1,p1)* ratio/ (p1) 1- ratio];
%% Select K and phi in weights
[K_best,phi,w] = select_K_target_gower( [X;Y], fs_weight,@knn_weight_gower_weighted_dense_cat,@knn_weight_gower_concat_2data_weighted_tune_cat,1);
w = w ./ sum(w);
%% [U_output,Z_output] = intclu_l2_logll_CARP_SOK(X,Y,w,3);
% [U_output,V_output,Z_output,class_id_final] = intclu_l2_multinomial_matrix_CARP_SOK(X,Y_mat,w,3);
[U_output,V_output,Z_output,class_id_final] = scc_category_ARP(X,Y_mat,w,K);
%% Rand Index
V_round = round(Z_output,3);
[class_id,iter_cut] = get_cluster_assignment(V_round,w,n,K);
len_V = size(V_round,3);
if length(unique(class_id)) == 1
class_id_mat = zeros(len_V,n);
class_no_vec = zeros(len_V,1);
for i = 1:len_V
[class_no_vec(i), class_id_mat(i,:)] = group_assign_vertice(V_round(:,:,i),w,n);
end
iter_cut = max(find(class_no_vec > 1));
class_id = class_id_mat(iter_cut,:);
end
end