-
Notifications
You must be signed in to change notification settings - Fork 0
/
refine.py
176 lines (138 loc) · 6.41 KB
/
refine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import os.path as osp
import argparse
import json
import yaml
import time
from tqdm import tqdm
import numpy as np
from sklearn.neighbors import NearestNeighbors
import open3d as o3d
from datetime import timedelta
import pandas as pd
from utils.load_input import load_dataset, load_point_clouds, sort_eval_pairs, process_log
from utils.rot_utils import homo_matmul
from utils.utils import prepare_for_saving_results
from utils.eval_utils import RRE, RTE
from icp.icp_versions import ICP
def register_icp(options):
DATASET_NAME = options['DATASET-NAME']
CONTINUE_RUN = options['CONTINUE-RUN']
CONTINUE_RUN_PATH = options['CONTINUE-RUN-PATH']
RESULTS_PATH = options['RESULTS-PATH']
QUANTILE_THR = options['MAX-CORRESPONDENCE-DISTANCE-QUANTILE']
MAX_ITER = options['MAX-ITERATION']
ICP_VERSION = options['ICP-VERSION']
# set icp
icp = ICP(version_choice=ICP_VERSION,
max_iter=MAX_ITER,
quantile_distance=QUANTILE_THR)
# create results paths and files
now = CONTINUE_RUN_PATH.split("/")[1] if CONTINUE_RUN else time.strftime('%y%m%d%H%M')
cols = ['folder',
'examples',
'time',
'RRE',
'RTE']
results_vars = prepare_for_saving_results(now,CONTINUE_RUN,options,cols)
results_folder_path, results_df_path, result_columns, results_df = results_vars
# load inputs
data_dict, folder_names = load_dataset(options)
for fname in folder_names:
print(f'{icp.name} for {fname}')
N_point_clouds_folder = data_dict[fname]['N']
full_data_path = data_dict[fname]['full_data_path']
eval_pairs = list(data_dict[fname]['eval'].keys())
eval_pairs = sort_eval_pairs(eval_pairs, DATASET_NAME)
T_GT = data_dict[fname]['eval']
name = fname.split('.ply')[0] # special case for faust-partial that iterates over examples
T_ESTIM_BASELINE = process_log(osp.join(RESULTS_PATH,f'{name}.log'))
log_path = osp.join(results_folder_path,f'{name}.log')
for ep in tqdm(eval_pairs):
if CONTINUE_RUN:
if results_df[(results_df['folder'] == fname) &
(results_df['examples'] ==ep)].shape[0]>0:
continue
# init_time = time.time()
# pci is target if following paper
# pcj is source if following paper
# solve rotation on source
# solve translation on target
# goal is to register pcj onto pci
ind_i, ind_j = ep.split(' ')
pci, pcj = load_point_clouds(ind_i,
ind_j,
DATASET_NAME,
full_data_path,
fname,
data_dict)
# source is pcj
# target is pci
pci_np = np.asarray(pci.points).copy()
pcj_np = np.asarray(pcj.points).copy()
pcj_np_estim = homo_matmul(pcj_np,T_ESTIM_BASELINE[ep])
# find distance threshold
neigh = NearestNeighbors(n_neighbors=1)
neigh.fit(pci_np)
dist, _ = neigh.kneighbors(pcj_np_estim)
adaptive_thr = np.quantile(dist,QUANTILE_THR) # threshold so QUANTILE_THR% pts in
runtime, new_T_estim = icp.run_icp(pcj,pci,adaptive_thr,T_ESTIM_BASELINE[ep])
#### EVAL ###################################################################
R_est = new_T_estim[:3,:3]
t_est = new_T_estim[:3,3]
T_gt = T_GT[ep]
R_gt = T_gt[:3,:3]
t_gt = T_gt[:3,3]
rre = RRE(R_gt,R_est)
rte = RTE(t_gt,t_est)
#### SAVE RESULTS ##########################################################
# save transformation into log
with open(log_path,'a+') as f:
f.write('{} \t {}\t {}\n'.format(ind_i, ind_j, N_point_clouds_folder))
f.write(str(new_T_estim.tolist()).replace('], [','\n').replace(',','\t')[2:-2])
f.write('\n')
# save evaluation results
current_results = pd.Series([fname,
ep,
runtime.__str__(),
rre,
rte
],
index=result_columns)
results_df = pd.concat([results_df,current_results.to_frame().T],
ignore_index=True)
results_df.to_csv(results_df_path, index=False)
if __name__ == '__main__':
# choose which results to evaluate
possible_results_folder_names = os.listdir('results')
possible_results_folder_names = [osp.join('results',x) for x in possible_results_folder_names]
parser = argparse.ArgumentParser()
parser.add_argument("-R","--results_folder_path",
required=True,
type=str,
choices=possible_results_folder_names,
help='Path to results folder')
parser.add_argument("-C","--continue_run_folder_path",
type=str,
default=None,
choices=possible_results_folder_names,
help='Path to results where running gen-icp stopped.')
args = parser.parse_args()
# parse choice and load existing config file
results_path = args.results_folder_path
f = open (osp.join(results_path,'options.json'), "r")
options = json.loads(f.read())
options['RESULTS-PATH'] = results_path
options['CONTINUE-RUN'] = True if args.continue_run_folder_path else False
options['CONTINUE-RUN-PATH'] = args.continue_run_folder_path
# load dataset variables
with open('config.yaml','r') as f:
config = yaml.safe_load(f)
dataset_name = options['DATASET-NAME']
if ('FP' not in options['DATASET-NAME']) and ('KITTI' not in options['DATASET-NAME']):
options['OVERLAP-CSV-PATH'] = config[f'REGISTER-{dataset_name}']['OVERLAP-CSV-PATH']
# load icp variables
icp_vars = config['REFINE']
options.update(icp_vars)
options['METHOD-REFINEMENT-NAME'] = icp_vars['ICP-VERSION']
register_icp(options)