-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tune_from_checkpoint.py
72 lines (61 loc) · 2.39 KB
/
fine_tune_from_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
# Load the previously saved model and tokenizer
model_path = "./further_fine_tuned_model"
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Load and prepare dataset
dataset = load_dataset("imdb")
train_dataset = dataset["train"].shuffle(seed=42).select(range(2000))
eval_dataset = dataset["test"].shuffle(seed=42).select(range(200))
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
# Tokenize the datasets
train_dataset = train_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
eval_dataset = eval_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
# Set data types
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
eval_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary')
acc = accuracy_score(labels, predictions)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall
}
# Set up training arguments
training_args = TrainingArguments(
output_dir="./continued_training_results",
num_train_epochs=3, # You can adjust this
per_device_train_batch_size=8,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./continued_training_logs",
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="accuracy",
no_cuda=True,
)
# Initialize the Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Continue training
trainer.train()
# Save the further fine-tuned model
output_dir = "./further_fine_tuned_model2"
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
print("Further model training completed successfully.")