-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
185 lines (165 loc) · 7.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
PanopticFCN Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import torch
import os
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import COCOEvaluator, verify_results
from data.cityscapes.cityscapes_panoptic_separated import register_all_cityscapes_panoptic
from data.cityscapes.dataset_mapper import CityscapesPanopticDatasetMapper
from data.cityscapes.cityscapes_panoptic_separated_sampling import register_all_cityscapes_panoptic_newsampling
from data.cityscapes.dataset_mapper_sampling import CityscapesPanopticDatasetMapperSampling
from data.mapillaryvistas.dataset_mapper import MapillaryVistasPanopticDatasetMapper
from data.mapillaryvistas.mapillary_vistas_panoptic_separated import register_all_mapillary_vistas_panoptic
from data.mapillaryvistas.dataset_mapper_sampling import MapillaryVistasPanopticDatasetMapperSampling
from data.mapillaryvistas.mapillary_vistas_panoptic_separated_sampling import register_all_mapillary_vistas_panoptic_sampling
from panopticfcn import add_panopticfcn_config, build_lr_scheduler
os.environ["NCCL_LL_THRESHOLD"] = "0"
from detectron2.data import MetadataCatalog, build_detection_train_loader
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
COCOPanopticEvaluator,
DatasetEvaluators,
LVISEvaluator,
PascalVOCDetectionEvaluator,
SemSegEvaluator,
verify_results,
)
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
output_dir=output_folder,
)
)
if evaluator_type in ["coco", "coco_panoptic_seg"]:
evaluator_list.append(COCOEvaluator(dataset_name, cfg, True, output_folder))
if evaluator_type in ["cityscapes_panoptic_seg", "coco_panoptic_seg", "mapillary_vistas_panoptic_seg"]:
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
if evaluator_type == "cityscapes_instance":
assert (
torch.cuda.device_count() >= comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesInstanceEvaluator(dataset_name)
if evaluator_type == "cityscapes_sem_seg":
assert (
torch.cuda.device_count() >= comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesSemSegEvaluator(dataset_name)
elif evaluator_type == "pascal_voc":
return PascalVOCDetectionEvaluator(dataset_name)
elif evaluator_type == "lvis":
return LVISEvaluator(dataset_name, cfg, True, output_folder)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_train_loader(cls, cfg):
if cfg.DATASETS.NAME == 'Cityscapes':
if cfg.INPUT.NEW_SAMPLING:
mapper = CityscapesPanopticDatasetMapperSampling(cfg)
else:
mapper = CityscapesPanopticDatasetMapper(cfg)
return build_detection_train_loader(cfg, mapper=mapper)
elif cfg.DATASETS.NAME == 'Mapillary':
if cfg.INPUT.NEW_SAMPLING:
mapper = MapillaryVistasPanopticDatasetMapperSampling(cfg)
else:
mapper = MapillaryVistasPanopticDatasetMapper(cfg)
return build_detection_train_loader(cfg, mapper=mapper)
else:
return build_detection_train_loader(cfg)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_panopticfcn_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if comm.is_main_process():
if cfg.SAVE_PREDICTIONS:
save_dir = os.path.join(cfg.SAVE_DIR, cfg.SAVE_DIR_NAME)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
# Convert batch size to internally used batch size (for crop sampling)
if cfg.INPUT.NEW_SAMPLING:
assert cfg.SOLVER.IMS_PER_BATCH % 2 == 0
print("Initial ims per batch: {}".format(cfg.SOLVER.IMS_PER_BATCH))
cfg.SOLVER.defrost()
cfg.SOLVER.IMS_PER_BATCH = cfg.SOLVER.IMS_PER_BATCH // 2
cfg.SOLVER.freeze()
print("Used ims per batch: {}".format(cfg.SOLVER.IMS_PER_BATCH))
# TODO: assert that batch size is compatible with IBS
if cfg.DATASETS.NAME == 'Cityscapes':
if cfg.INPUT.NEW_SAMPLING:
register_all_cityscapes_panoptic_newsampling(cfg)
else:
register_all_cityscapes_panoptic(cfg)
elif cfg.DATASETS.NAME == 'Mapillary':
if cfg.INPUT.NEW_SAMPLING:
register_all_mapillary_vistas_panoptic_sampling(cfg)
else:
register_all_mapillary_vistas_panoptic(cfg)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
if args.machine_rank == -1:
machine_rank = int(os.environ['SLURM_PROCID'])
else:
machine_rank = args.machine_rank
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=machine_rank,
dist_url=args.dist_url,
args=(args,),
)