-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleIterationMethod.cpp
79 lines (71 loc) · 1.7 KB
/
SimpleIterationMethod.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include<bits/stdc++.h>
#define ff first
#define ss second
#define pb push_back
#define mp make_pair
#define ll long long
#define ld long double
#define all(a) a.begin(),a.end()
#define ios ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define endl '\n'
#define ull unsigned long long
#define iter set<int>::iterator
#define iter1 set<int>::iterator
#define y1 ajsdkflhasdkf
using namespace std;
const int N=1e6+7;
const int inf=1e9+1e9;
const int mod=1e9+7;
//const ld eps=1e-9;
ld eps,a,b;
ld F(ld x)
{
return x*x*x-7*x-6;
}
ld phi(ld x)
{
return (x*x*x-6)/7.0;
}
ld phiDerivative(ld x)
{
return 3*x*x/7.0;
}
void error()
{
cout<<"The conditions of the theorem are not satisfied"<<endl;
exit(0);
}
int main ()
{
cout<<fixed<<setprecision(5);
cout<<"Enter needed precision: ";
cin>>eps;
ld a=-1.1,b=1.1;
ld q=0.6;
ld x0=-0.5;
ld S=1.6;
if (q<fabs(phiDerivative(b)) || q<fabs(phiDerivative(a)))error();
if (fabs(phi(x0)-x0)>(1-q)*S)error();
int n0 = floor(log(fabs(phi(x0)-x0)/((1-q)*eps))/log(1/q))+1;
cout<<"The conditions of the theorem are satisfied"<<endl;
cout<<"The a priori number of operations is "<<n0<<endl;
int cnt = 0 ;
ld xPrev = -inf ;
ld xNext = x0;
for (int i=0;;++i){
cout<<i+1<<" value of x is "<<xNext<<". "<<"Function value is "<<F(xNext)<<endl;
if (fabs(xNext-xPrev)<eps/2){
cout<<"Required accuracy achieved"<<endl;
break;
}
++cnt;
xPrev=xNext;
xNext = phi(xPrev);
}
cout<<"Actual number of operations is "<<cnt<<endl;
cout<<"Result x value is "<<xNext<<". "<<"Function value is "<<F(xNext)<<endl;
}
//ûâëîäð
//10 1
//cbcccaacaa
//7 8