This document provides technical specifications for implementing the agentic sidecar component that will transform the DuckDB Spawn data product into an autonomous entity within our data mesh ecosystem. The sidecar leverages Apple's MLX framework for efficient model inference and implements the Multi-agent Cooperation Protocol (MCP) for coordination with other data products.
Component | Development | Production |
---|---|---|
CPU | Apple Silicon (M1/M2/M3) | x86_64 (8+ cores) |
Memory | 8GB minimum | 16GB recommended |
Storage | 5GB for model artifacts | 10GB for model and knowledge base |
Network | 100Mbps | 1Gbps |
Component | Version | Purpose |
---|---|---|
Python | 3.10+ | Core runtime |
MLX | 0.5.0+ | ML acceleration framework |
FastAPI | 0.100.0+ | API framework |
Docker | 24.0.0+ | Containerization |
Kubernetes | 1.27+ | Orchestration |
Redis | 7.0+ | Cache and message broker |
DuckDB | 0.9.0+ | Data storage |
{
"model_type": "mistral-7b-instruct",
"quantization": "int8",
"max_seq_length": 2048,
"vocab_size": 32000,
"hidden_size": 4096,
"intermediate_size": 14336,
"num_hidden_layers": 32,
"num_attention_heads": 32,
"num_key_value_heads": 8,
"fine_tuned": true,
"domain_specific_tokens": 250,
"size_on_disk_mb": 3800,
"inference_memory_mb": 1500
}
The full-size model will be distilled to a smaller, more efficient model using the following process:
- Teacher Model: mistral-7b-instruct (fine-tuned on data operations)
- Student Model: <1B parameter model with MLX optimization
- Distillation Dataset:
- 50,000 schema operations examples
- 25,000 query optimization examples
- 10,000 agent coordination examples
- Distillation Method: Knowledge distillation with temperature scaling
- Evaluation Metrics:
- Accuracy on schema tasks
- ROUGE/BLEU for generation quality
- Latency and memory footprint
- MLX Acceleration: Utilizing MLX for Apple Silicon optimization
- Quantization: INT8 quantization for reduced memory footprint
- Caching: Response caching for common operations
- Batching: Request batching for improved throughput
Endpoint | Method | Purpose |
---|---|---|
/agent/health |
GET | Health check for the agent |
/agent/analyze |
POST | Analyze and suggest improvements |
/agent/execute |
POST | Execute approved operations |
/agent/message |
POST | Receive MCP messages |
/agent/capabilities |
GET | List agent capabilities |
- JWT Authentication: For secure communication between data product and agent
- API Key: For external services communication
- Role-Based Authorization: Different access levels for different operations
// Request to /agent/analyze
{
"operation_type": "schema_optimization",
"context": {
"table_name": "projects",
"query_patterns": [
{"query": "SELECT * FROM projects WHERE status = ?", "frequency": 120},
{"query": "SELECT * FROM projects WHERE creation_date > ?", "frequency": 45}
],
"current_schema": [
{"name": "project_id", "type": "UUID", "indexed": true},
{"name": "project_name", "type": "VARCHAR", "indexed": false},
{"name": "status", "type": "VARCHAR", "indexed": false},
{"name": "creation_date", "type": "DATE", "indexed": false}
]
}
}
// Response
{
"suggestion_id": "sugg-123456",
"suggestions": [
{
"type": "add_index",
"target": "status",
"reason": "High frequency filtering on non-indexed column",
"execution_sql": "CREATE INDEX idx_projects_status ON projects (status);",
"estimated_impact": {
"query_speedup": "80%",
"storage_overhead": "2%"
}
},
{
"type": "add_index",
"target": "creation_date",
"reason": "Moderate frequency filtering on date column",
"execution_sql": "CREATE INDEX idx_projects_creation_date ON projects (creation_date);",
"estimated_impact": {
"query_speedup": "60%",
"storage_overhead": "3%"
}
}
],
"confidence": 0.92,
"requires_approval": true
}
{
"message_id": "msg-123456",
"timestamp": "2023-09-15T14:30:00Z",
"sender": {
"agent_id": "agent-duckdb-spawn-1",
"product_id": "duckdb-spawn",
"domain": "financing"
},
"recipient": {
"agent_id": "agent-risk-assessment-1",
"product_id": "risk-assessment",
"domain": "risk"
},
"message_type": "schema_proposal",
"content": {
"operation": "add_column",
"details": {
"table": "projects",
"column_name": "risk_assessment_id",
"column_type": "UUID",
"required": false,
"description": "Foreign key to Risk Assessment domain",
"purpose": "Enable cross-domain data joins"
}
},
"requires_response": true,
"priority": "normal",
"ttl_seconds": 3600
}
- Message Serialization/Deserialization: Converting between JSON and internal representations
- Message Routing: Determining the appropriate recipient for each message
- Response Handling: Processing and correlating responses to requests
- Error Handling: Managing timeouts, retries, and failed deliveries
- Message Prioritization: Handling urgent vs. normal priority messages
- Agent Registry Service: Central registry for discovery of available agents
- Capability Advertisement: Regular updates of agent capabilities to the registry
- Domain Directory: Mapping of domains to responsible data products and agents
┌─────────┐ ┌────────────┐ ┌─────────────┐ ┌────────────┐
│ Finance │ │ Finance │ │ Risk │ │ Risk │
│ Product │ │ Agent │ │ Agent │ │ Product │
└────┬────┘ └─────┬──────┘ └──────┬──────┘ └──────┬─────┘
│ │ │ │
│ Schema Change Need │ │ │
│───────────────────> │ │ │
│ │ │ │
│ │ Analyze Impact │ │
│ │────────────┐ │ │
│ │ │ │ │
│ │ <──────────┘ │ │
│ │ │ │
│ │ Schema Proposal Message│ │
│ │───────────────────────>│ │
│ │ │ │
│ │ │ Evaluate Proposal │
│ │ │────────────────────> │
│ │ │ │
│ │ │ <─────────────────── │
│ │ │ │
│ │ Acceptance Message │ │
│ │ <──────────────────────│ │
│ │ │ │
│ Execute Schema Change│ │ │
│ <────────────────── │ │ │
│ │ │ │
│ Confirmation │ │ │
│───────────────────> │ │ │
│ │ │ │
│ │ Completion Notification│ │
│ │───────────────────────>│ │
│ │ │ │
│ │ │ Update Related Schema │
│ │ │────────────────────> │
│ │ │ │
│ │ │ <─────────────────── │
│ │ │ │
│ │ Sync Complete Message │ │
│ │ <──────────────────────│ │
│ │ │ │
└─────────────────────────────────────────────────────────────────────────────┘
CREATE TABLE agent_decisions (
decision_id UUID PRIMARY KEY,
timestamp TIMESTAMP NOT NULL,
operation_type VARCHAR NOT NULL,
context JSON NOT NULL,
suggestion JSON NOT NULL,
approved BOOLEAN,
executed BOOLEAN,
outcome JSON,
feedback_score FLOAT
);
CREATE TABLE observed_patterns (
pattern_id UUID PRIMARY KEY,
pattern_type VARCHAR NOT NULL,
pattern_data JSON NOT NULL,
first_observed TIMESTAMP NOT NULL,
last_observed TIMESTAMP NOT NULL,
occurrence_count INTEGER NOT NULL,
confidence FLOAT NOT NULL
);
CREATE TABLE agent_messages (
message_id UUID PRIMARY KEY,
sender_id VARCHAR NOT NULL,
recipient_id VARCHAR NOT NULL,
message_type VARCHAR NOT NULL,
content JSON NOT NULL,
sent_timestamp TIMESTAMP NOT NULL,
delivery_status VARCHAR NOT NULL,
response_id UUID
);
- Primary: SQLite for lightweight deployment
- Alternative: DuckDB for analytical capabilities
- Distributed: PostgreSQL for multi-node deployment
- Periodic Snapshots: Full database dump at regular intervals
- Transaction Log: Continuous logging of all operations
- Backup Strategy: Encrypted backups to secure storage
- Notification System: Email/Slack notifications for pending approvals
- Web Dashboard: UI for reviewing and approving agent suggestions
- CLI Interface: Command-line tools for administrators
- Decision Factors: List of factors that influenced the decision
- Alternative Options: Other considered options and why they were rejected
- Expected Impact: Quantitative metrics for expected improvements
- Risk Assessment: Potential downsides or risks
- Action Outcome Tracking: Measuring actual vs. expected outcomes
- User Feedback Collection: Collecting explicit feedback on suggestions
- Model Refinement: Using feedback to improve future suggestions
- ✅ Set up MLX development environment
- ✅ Implement distillation pipeline for domain-specific model
- ✅ Create basic inference API
- ✅ Benchmark performance and optimize
- ✅ Design and implement REST API
- ✅ Create schema analysis capability
- ✅ Implement secure authentication
- ✅ Develop suggestion generation logic
- ✅ Implement database schema
- ✅ Create persistence mechanisms
- ✅ Develop pattern recognition capabilities
- ✅ Set up backup procedures
- ✅ Design MCP message formats for data operations
- 🔄 Implement message handling logic (60% complete)
- 🔄 Create agent discovery mechanism (40% complete)
- ⏳ Test cross-agent communication
- ✅ Develop approval workflows
- 🔄 Create explanation generation (20% complete)
- ⏳ Implement feedback collection
- ⏳ Design administrative dashboard
- ⏳ Unit testing all components
- ⏳ Integration testing with DuckDB Spawn
- ⏳ Performance testing under load
- ⏳ Security assessment
As of April 2025, we have completed Phases 1-3 and are actively working on Phase 4, with initial work beginning on Phase 5:
-
MLX Inference Engine:
- Successfully distilled MLX-MistralFineTuned to 700M parameters
- Achieved 85ms average inference time for schema operations
- Implemented INT8 quantization reducing memory footprint to 1.2GB
- Containerized deployment with optimized resource utilization
-
Agent Interface:
- RESTful API with all planned endpoints implemented
- JWT authentication and role-based access control
- Schema analysis capability with promising initial results
- Query pattern detection framework implemented
-
Knowledge Store:
- Implemented DuckDB-backed persistence layer
- Transaction logging and encrypted backups
- Pattern recognition framework for query optimization
- Historical decision tracking
-
MCP Implementation:
- Message format design completed
- Basic message passing implementation (60% complete)
- Agent discovery mechanism in development (40% complete)
- Cross-agent communication protocols in design phase
-
Human Interface:
- Approval workflows completed and deployed
- Explanation generation in early development (20% complete)
- Feedback collection and dashboard design in planning phase
Initial performance testing of completed components shows promising results:
- Latency: 85ms average inference time (p95: 120ms)
- Resource Utilization: 1.2GB memory, 0.5 CPU average
- Accuracy: Early testing shows ~80% of suggestions appear viable (human validation pending)
- Overhead: Currently adds 3.8% additional load on data product (target: <5%)
The primary focus for the next 6 weeks is to:
-
Complete the MCP Implementation phase
- Finish message handling logic implementation
- Complete the agent discovery mechanism
- Begin testing cross-agent communication
-
Make progress on the Human Interface phase
- Advance explanation generation capabilities
- Begin implementing feedback collection mechanism
- Create initial designs for the administrative dashboard
-
Prepare for the Testing & Integration phase
- Develop test plans and automation
- Create integration test environment
- Define performance benchmarks
Milestone | Target Date | Description |
---|---|---|
Alpha Release | June 2025 | Internal testing with limited users |
Beta Release | August 2025 | Expanded testing with selected partners |
Integration with v2.0.0 | November 2025 | First production-ready features |
Full Deployment | Q1 2026 | Complete feature set deployment |
# Docker Compose snippet for the agent sidecar
version: '3.8'
services:
agent-sidecar:
image: duckdb-spawn/agent-sidecar:${TAG:-latest}
build:
context: ./agent
dockerfile: Dockerfile
args:
- MODEL_VERSION=${MODEL_VERSION:-v1}
volumes:
- agent-data:/app/data
environment:
- DATA_PRODUCT_API=http://duckdb-spawn:8000
- MCP_REGISTRY_URL=http://mcp-registry:8080
- LOG_LEVEL=info
- AUTH_SECRET=${AUTH_SECRET}
ports:
- "9000:9000"
depends_on:
- duckdb-spawn
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9000/agent/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 40s
deploy:
resources:
limits:
cpus: '2'
memory: 4G
reservations:
cpus: '1'
memory: 2G
volumes:
agent-data:
apiVersion: apps/v1
kind: Deployment
metadata:
name: agent-sidecar
namespace: data-products
spec:
replicas: 1
selector:
matchLabels:
app: agent-sidecar
template:
metadata:
labels:
app: agent-sidecar
spec:
containers:
- name: agent-sidecar
image: duckdb-spawn/agent-sidecar:latest
resources:
limits:
cpu: "2"
memory: "4Gi"
requests:
cpu: "1"
memory: "2Gi"
ports:
- containerPort: 9000
env:
- name: DATA_PRODUCT_API
value: "http://duckdb-spawn:8000"
- name: MCP_REGISTRY_URL
value: "http://mcp-registry:8080"
- name: LOG_LEVEL
value: "info"
- name: AUTH_SECRET
valueFrom:
secretKeyRef:
name: agent-secrets
key: auth-secret
volumeMounts:
- name: agent-data
mountPath: /app/data
livenessProbe:
httpGet:
path: /agent/health
port: 9000
initialDelaySeconds: 40
periodSeconds: 30
volumes:
- name: agent-data
persistentVolumeClaim:
claimName: agent-data-pvc
- Encryption at Rest: All persistent data encrypted
- Encryption in Transit: TLS for all API communication
- Access Control: Strict authentication and authorization
- Input Sanitization: Remove potential injection attempts
- Input Classification: Detect and reject adversarial inputs
- Response Validation: Validate model outputs before execution
- Least Privilege: Containers run with minimal permissions
- Secrets Management: Secure handling of credentials
- Vulnerability Scanning: Regular container image scanning
-
Performance Metrics:
- Inference latency (p50, p95, p99)
- Memory usage
- CPU utilization
- Request throughput
-
Operational Metrics:
- Success/failure rates
- Suggestion approval rate
- Impact of implemented suggestions
- Message delivery rates
- Structured Logging: JSON format with standardized fields
- Log Levels: ERROR, WARNING, INFO, DEBUG
- Sensitive Data Handling: Redaction of sensitive information
- Error Rate Thresholds: Alert on elevated error rates
- Latency Thresholds: Alert on performance degradation
- Resource Utilization: Alert on memory/CPU constraints
This technical specification provides a comprehensive guide for implementing the agentic sidecar component for DuckDB Spawn using MLX for model inference and MCP for multi-agent coordination. By following this specification, we aim to create an efficient, secure, and effective autonomous data product that enhances our data mesh architecture while maintaining governance and control.