-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathPos.lp
584 lines (497 loc) · 15.6 KB
/
Pos.lp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/* Positive binary integers
by Quentin Garchery (May 2021). */
require open Stdlib.Set Stdlib.Prop Stdlib.FOL Stdlib.Eq
Stdlib.Nat Stdlib.Bool Stdlib.Comp;
inductive ℙ : TYPE ≔
| I : ℙ → ℙ
| O : ℙ → ℙ
| H : ℙ;
// set code for ℙ
constant symbol pos : Set;
rule τ pos ↪ ℙ;
// boolean functions for testing head constructor
symbol isI : ℙ → 𝔹;
rule isI (I _) ↪ true
with isI (O _) ↪ false
with isI H ↪ false;
symbol isO : ℙ → 𝔹;
rule isO (I _) ↪ false
with isO (O _) ↪ true
with isO H ↪ false;
symbol isH : ℙ → 𝔹;
rule isH (I _) ↪ false
with isH (O _) ↪ false
with isH H ↪ true;
// Discriminate constructors
symbol I≠H [x] : π (I x ≠ H) ≔
begin
assume x h; refine ind_eq h (λ x, istrue(isH x)) ⊤ᵢ;
end;
symbol O≠H [x] : π (O x ≠ H) ≔
begin
assume x h; refine ind_eq h (λ x, istrue(isH x)) ⊤ᵢ;
end;
symbol I≠O [x y] : π (I x ≠ O y) ≔
begin
assume x y h; refine ind_eq h (λ x, istrue(isO x)) ⊤ᵢ;
end;
opaque symbol caseH x : π(x = H ∨ x ≠ H) ≔
begin
induction
{ assume x h; apply ∨ᵢ₂; refine I≠H }
{ assume x h; apply ∨ᵢ₂; refine O≠H }
{ apply ∨ᵢ₁; reflexivity }
end;
// Constructors are injective
symbol projO : ℙ → ℙ;
rule projO (O $x) ↪ $x
with projO (I $x) ↪ I $x
with projO H ↪ H;
opaque symbol O_inj p q : π(O p = O q) → π(p = q) ≔
begin
assume p q h; apply feq projO h
end;
symbol projI : ℙ → ℙ;
rule projI (I $x) ↪ $x
with projI (O $x) ↪ O $x
with projI H ↪ H;
opaque symbol I_inj p q : π(I p = I q) → π(p = q) ≔
begin
assume p q h; apply feq projI h
end;
// Successor function
symbol succ : ℙ → ℙ;
rule succ (I $x) ↪ O (succ $x)
with succ (O $x) ↪ I $x
with succ H ↪ O H;
// Interpretation of ℙ in ℕ
symbol val : ℙ → ℕ;
rule val H ↪ 1
with val (O $x) ↪ 2 * val $x
with val (I $x) ↪ val (O $x) +1;
assert ⊢ val (O (I H)) ≡ 6;
opaque symbol valS x : π(val (succ x) = val x +1) ≔
begin
induction
{ assume x h; simplify; rewrite h; reflexivity }
{ assume x h; reflexivity }
{ reflexivity }
end;
opaque symbol val_surj [n] : π(n ≠ 0 ⇒ `∃ x, val x = n) ≔
begin
induction
{ assume h; apply ⊥ₑ; apply h; reflexivity }
{ assume n h i; apply ∨ₑ (casen n)
{ assume j; apply ∃ᵢ H; rewrite j; reflexivity }
{ assume j; apply ∃ₑ (h j); assume p k; apply ∃ᵢ (succ p);
rewrite left k; apply valS p /*FIXME*/ }
}
end;
opaque symbol val≠0 x : π(val x ≠ 0) ≔
begin
induction
{ assume x h; refine s≠0 }
{ assume x h; simplify; assume i;
apply h (∧ₑ₁ (∧ₑ₁ (addn_eq0 (val x) (val x)) i))
}
{ refine s≠0 }
end;
opaque symbol 2*val≠0 x : π(val x + val x ≠ 0) ≔
begin
assume x h; apply ⊥ₑ; apply val≠0 x; apply 2*=0; apply h
end;
opaque symbol val_inj [x y] : π(val x = val y) → π(x = y) ≔
begin
induction
{ assume x h; induction
{ simplify; assume y i j; rewrite h y _
{ apply 2*_inj; apply +1_inj; apply j }
{ reflexivity }
}
{ simplify; assume y i j; apply ⊥ₑ; apply odd≠even (val x) (val y) j }
{ simplify; assume i; apply ⊥ₑ; apply 2*val≠0 x; apply +1_inj; apply i }
}
{ assume x h; induction
{ simplify; assume y i j; apply ⊥ₑ;
apply odd≠even (val y) (val x) (eq_sym j) }
{ simplify; assume y i j; apply feq O; apply h; apply 2*_inj; apply j }
{ assume i; apply ⊥ₑ; apply odd≠even 0 (val x); symmetry; apply i }
}
{ induction
{ simplify; assume x h i; apply ⊥ₑ; apply val≠0 x; apply 2*=0; apply +1_inj;
symmetry; apply i }
{ simplify; assume x h i; apply ⊥ₑ; apply odd≠even 0 (val x); apply i }
{ reflexivity }
}
end;
// ℕ-like Induction Principle
symbol ind_ℙeano p : π (p H) → (Π x, π (p x) → π (p (succ x))) → Π x, π (p x) ≔
begin
assume p pH psucc;
have i: π(`∀ n, `∀ x, val x = n ⇒ p x) {
induction
{ induction
{ assume x h i; apply ⊥ₑ (s≠0 i) }
{ assume x h i; apply ⊥ₑ (val≠0 (O x) i) }
{ assume i; apply ⊥ₑ (s≠0 i) }
}
{ assume n h x; apply ∨ₑ (casen n)
{ assume i; rewrite i; assume j;
have k: π(x = H) { apply val_inj; apply j };
rewrite k; apply pH
}
{ assume i; apply ∃ₑ (val_surj i); assume y j; rewrite left j;
rewrite left valS; assume k; have l: π(x = succ y) { apply val_inj k };
rewrite l; apply psucc y; apply h; apply j
}
}
};
assume x; apply i (val x); reflexivity
end;
// Addition of ℙ numbers with and without a carry
symbol add : ℙ → ℙ → ℙ;
symbol add_carry : ℙ → ℙ → ℙ;
rule add (I $x) (I $q) ↪ O (add_carry $x $q)
with add (I $x) (O $q) ↪ I (add $x $q)
with add (O $x) (I $q) ↪ I (add $x $q)
with add (O $x) (O $q) ↪ O (add $x $q)
with add $x H ↪ succ $x
with add H $y ↪ succ $y;
rule add_carry (I $x) (I $q) ↪ I (add_carry $x $q)
with add_carry (I $x) (O $q) ↪ O (add_carry $x $q)
with add_carry (O $x) (I $q) ↪ O (add_carry $x $q)
with add_carry (O $x) (O $q) ↪ I (add $x $q)
with add_carry $x H ↪ add $x (O H)
with add_carry H $y ↪ add (O H) $y;
// for efficiency reasons last cases should not be 'succ (succ $x)'
// Check that 7 + 5 = 12
assert ⊢ add (I (I H)) (I (O H)) ≡ O (O (I H));
// Check that 110101010 + 101101100 ≡ 1100010110 in base 2 (426 + 364 ≡ 790)
assert ⊢ add (O (I (O (I (O (I (O (I H))))))))
(O (O (I (I (O (I (I (O H))))))))
≡ (O (I (I (O (I (O (O (O (I H)))))))));
// Interaction of succ and add
symbol succ_add x y : π (succ (add x y) = add_carry x y) ≔
begin
induction
// case I
{ assume p prec;
induction
{ reflexivity }
{ assume q h; simplify; rewrite prec; reflexivity }
{ reflexivity } }
// case O
{ assume p prec;
induction
{ assume q h; simplify; rewrite prec; reflexivity }
{ reflexivity }
{ reflexivity } }
// case H
{ induction { reflexivity } { reflexivity } { reflexivity } }
end;
symbol add_succ x y : π (add (succ x) y = succ (add x y)) ≔
begin
induction
// case I
{ assume p prec;
induction
{ assume q h; simplify; rewrite prec; rewrite succ_add; reflexivity }
{ assume q h; simplify; rewrite prec; reflexivity }
{ reflexivity } }
// case O
{ assume p prec;
induction
{ assume q h; simplify; rewrite succ_add; reflexivity }
{ reflexivity }
{ reflexivity } }
// case H
{ induction { reflexivity } { reflexivity } { reflexivity } }
end;
symbol add_succ_right x y : π (add x (succ y) = succ (add x y)) ≔
begin
refine ind_ℙeano (λ x, `∀ y, add x (succ y) = succ (add x y)) _ _
// case H
{ reflexivity }
// case succ
{ assume x xrec y;
rewrite add_succ; rewrite add_succ; rewrite xrec; reflexivity }
end;
// Associativity of the addition
symbol add_assoc x y z : π (add (add x y) z = add x (add y z)) ≔
begin
refine ind_ℙeano (λ x, `∀ y, `∀ z, add (add x y) z = add x (add y z)) _ _
// case H
{ refine add_succ }
// case succ
{ assume x xrec y z;
rewrite add_succ; rewrite add_succ; rewrite add_succ;
rewrite xrec; reflexivity }
end;
// Commutativity of the addition
symbol add_com x y : π (add x y = add y x) ≔
begin
refine ind_ℙeano (λ x, `∀ y, add x y = add y x) _ _
// case H
{ reflexivity }
// case succ
{ assume x xrec y;
rewrite add_succ; rewrite add_succ_right; rewrite xrec; reflexivity }
end;
// function λ x, 2 * x - 1
symbol pos_pred_double : ℙ → ℙ;
rule pos_pred_double (I $x) ↪ I (O $x)
with pos_pred_double (O $x) ↪ I (pos_pred_double $x)
with pos_pred_double H ↪ H;
symbol pos_pred_double_succ x : π (pos_pred_double (succ x) = I x) ≔
begin
induction
{ assume x xrec; simplify; rewrite xrec; reflexivity }
{ reflexivity }
{ reflexivity }
end;
symbol succ_pos_pred_double x : π (succ (pos_pred_double x) = O x) ≔
begin
induction
{ reflexivity }
{ assume x xrec; simplify; rewrite xrec; reflexivity }
{ reflexivity }
end;
// Comparison of ℙ numbers
symbol compare_acc : ℙ → Comp → ℙ → Comp;
rule compare_acc (I $x) $c (I $q) ↪ compare_acc $x $c $q
with compare_acc (I $x) _ (O $q) ↪ compare_acc $x Gt $q
with compare_acc (I _) _ H ↪ Gt
with compare_acc (O $x) _ (I $q) ↪ compare_acc $x Lt $q
with compare_acc (O $x) $c (O $q) ↪ compare_acc $x $c $q
with compare_acc (O _) _ H ↪ Gt
with compare_acc H _ (I _) ↪ Lt
with compare_acc H _ (O _) ↪ Lt
with compare_acc H $c H ↪ $c;
symbol compare x y ≔ compare_acc x Eq y;
// Commutative property of compare
symbol compare_acc_com x y c :
π (compare_acc y c x = opp (compare_acc x (opp c) y)) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h c; simplify; rewrite xrec; reflexivity }
{ assume y h c; simplify; rewrite xrec; reflexivity }
{ reflexivity } }
// case O
{ assume x xrec;
induction
{ assume y h c; simplify; rewrite xrec; reflexivity }
{ assume y h c; simplify; rewrite xrec; reflexivity }
{ reflexivity } }
// case H
{ induction
{ reflexivity }
{ reflexivity }
{ assume c; simplify; rewrite opp_idem; reflexivity } }
end;
symbol compare_com x y : π (compare y x = opp (compare x y)) ≔
begin
assume x y; refine compare_acc_com x y Eq;
end;
// Compare decides the equality
symbol compare_acc_nEq x y c : π (c ≠ Eq ⇒ compare_acc x c y ≠ Eq) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h c H; refine xrec y c H }
{ assume y h c H; refine xrec y Gt _; refine Gt≠Eq }
{ assume c h; refine Gt≠Eq } }
// case O
{ assume x xrec;
induction
{ assume y h c H; refine xrec y Lt _; refine Lt≠Eq }
{ assume y h c H; refine xrec y c H }
{ assume c h; refine Gt≠Eq } }
// case H
{ induction
{ assume y h c H; refine Lt≠Eq }
{ assume y h c H; refine Lt≠Eq }
{ assume c Hc; refine Hc } }
end;
symbol compare_decides x y : π (compare x y = Eq ⇒ x = y) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h H; rewrite xrec y H; reflexivity }
{ assume y h H; apply ⊥ₑ; refine compare_acc_nEq x y Gt _ H; refine Gt≠Eq }
{ assume H; apply ⊥ₑ; refine Gt≠Eq H } }
// case O
{ assume x xrec;
induction
{ assume y h H; apply ⊥ₑ; refine compare_acc_nEq x y Lt _ H; refine Lt≠Eq }
{ assume y h H; rewrite xrec y H; reflexivity }
{ assume H; apply ⊥ₑ; refine Gt≠Eq H } }
// case H
{ induction
{ assume y h H; apply ⊥ₑ; refine Lt≠Eq H }
{ assume y h H; apply ⊥ₑ; refine Lt≠Eq H }
{ reflexivity } }
end;
// Compare with Gt or Lt
symbol compare_Lt x y :
π (compare_acc x Lt y = case_Comp (compare x y) Lt Lt Gt) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h; refine xrec y }
{ assume y h; simplify;
refine ind_Comp (λ c, compare_acc x Gt y = c ⇒ c = case_Comp c Lt Lt Gt) _ _ _ (compare_acc x Gt y) _
{ assume H; apply ⊥ₑ; refine compare_acc_nEq x y Gt _ H }
{ refine Gt≠Eq }
{ reflexivity }
{ reflexivity } }
{ reflexivity; reflexivity } }
// case O
{ assume x xrec;
induction
{ assume y h; simplify;
refine ind_Comp (λ c, compare_acc x Lt y = c ⇒ c = case_Comp c Lt Lt Gt) _ _ _ (compare_acc x Lt y) _
{ assume H; apply ⊥ₑ; refine compare_acc_nEq x y Lt _ H }
{ refine Lt≠Eq }
{ reflexivity }
{ reflexivity } }
{ reflexivity }
{ assume y h; refine xrec y;
reflexivity } }
// case H
{ induction { reflexivity } { reflexivity } { reflexivity } }
end;
symbol compare_Gt x y :
π (compare_acc x Gt y = case_Comp (compare x y) Gt Lt Gt) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h; refine xrec y }
{ assume y h; simplify;
refine ind_Comp (λ c, compare_acc x Gt y = c ⇒ c = case_Comp c Gt Lt Gt) _ _ _ (compare_acc x Gt y) _
{ assume H; apply ⊥ₑ; refine compare_acc_nEq x y Gt _ H }
{ refine Gt≠Eq }
{ reflexivity }
{ reflexivity } }
{ reflexivity; reflexivity } }
// case O
{ assume x xrec;
induction
{ assume y h; simplify;
refine ind_Comp (λ c, compare_acc x Lt y = c ⇒ c = case_Comp c Gt Lt Gt) _ _ _ (compare_acc x Lt y) _
{ assume H; apply ⊥ₑ; refine compare_acc_nEq x y Lt _ H }
{ refine Lt≠Eq }
{ reflexivity }
{ reflexivity } }
{ reflexivity; assume y h; refine xrec y }
{ reflexivity } }
// case H
{ induction { reflexivity } { reflexivity } { reflexivity } }
end;
// Compatibility of compare with the addition
symbol compare_H_Lt y : π (compare_acc H Lt y = Lt) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol compare_Gt_H x : π (compare_acc x Gt H = Gt) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol compare_H_succ y c : π (compare_acc H c (succ y) = Lt) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol compare_succ_H x c : π (compare_acc (succ x) c H = Gt) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol compare_succ_Lt x y :
π (compare_acc (succ x) Lt y = compare_acc x Gt y) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h; refine xrec y }
{ assume y h; refine xrec y }
{ reflexivity } }
// case O
{ assume x xrec;
induction { reflexivity } { reflexivity } { reflexivity } }
// case H
{ induction
{ assume y h; refine compare_H_Lt y }
{ assume y h; refine compare_H_Lt y }
{ reflexivity } }
end;
symbol compare_Gt_succ x y :
π (compare_acc x Gt (succ y) = compare_acc x Lt y) ≔
begin
assume x y;
rewrite compare_acc_com; rewrite .[u in _ = u] compare_acc_com;
simplify; rewrite compare_succ_Lt; reflexivity;
end;
symbol compare_succ_succ x y c :
π (compare_acc (succ x) c (succ y) = compare_acc x c y) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h c; refine xrec y c }
{ assume y h c; simplify; refine compare_succ_Lt x y }
{ assume c; simplify; refine compare_succ_H x c } }
// case O
{ assume x xrec;
induction
{ assume y h c; simplify; refine compare_Gt_succ x y }
{ assume y h c; reflexivity }
{ assume c; simplify; refine compare_Gt_H x } }
// case H
{ induction
{ assume y h c; simplify; refine compare_H_succ y c }
{ assume y h c; simplify; refine compare_H_Lt y }
{ reflexivity } }
end;
symbol compare_compat_add a x y :
π (compare (add x a) (add y a) = compare x y) ≔
begin
refine ind_ℙeano (λ a, `∀ x, `∀ y, compare (add x a) (add y a) = compare x y) _ _
// case H
{ assume x y; refine compare_succ_succ x y Eq }
// case succ
{ assume a arec x y;
rewrite add_succ_right; rewrite add_succ_right; rewrite left arec x y;
simplify; rewrite compare_succ_succ; reflexivity }
end;
// Multiplication
symbol mul : ℙ → ℙ → ℙ;
rule mul (I $x) $y ↪ add $x (O (mul $x $y))
with mul (O $x) $y ↪ O (mul $x $y)
with mul H $y ↪ $y;
// shortcuts
symbol _1 ≔ H;
symbol _2 ≔ O H;
symbol _3 ≔ I H;
symbol _4 ≔ O (O H);
symbol _5 ≔ I (O H);
symbol _6 ≔ O (I H);
symbol _7 ≔ I (I H);
symbol _8 ≔ O (O (O H));
symbol _9 ≔ I (O (O H));
symbol _10 ≔ O (I (O H));
// enable printing of natural numbers in decimal notation
builtin "pos_one" ≔ H;
builtin "pos_double" ≔ O;
builtin "pos_succ_double" ≔ I;
compute add _2 _2;