-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathZ.lp
696 lines (583 loc) · 18.7 KB
/
Z.lp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/* Binary integers
by Quentin Garchery (May 2021). */
require open Stdlib.Set Stdlib.Prop Stdlib.FOL Stdlib.Eq Stdlib.Pos Stdlib.Bool;
inductive ℤ : TYPE ≔ // \BbbZ
| Z0 : ℤ
| Zpos : ℙ → ℤ
| Zneg : ℙ → ℤ;
// set code for ℤ
constant symbol int : Set;
rule τ int ↪ ℤ;
// boolean functions for testing head constructor
symbol isZ0 : ℤ → 𝔹;
rule isZ0 Z0 ↪ true
with isZ0 (Zpos _) ↪ false
with isZ0 (Zneg _) ↪ false;
symbol isZpos : ℤ → 𝔹;
rule isZpos Z0 ↪ false
with isZpos (Zpos _) ↪ true
with isZpos (Zneg _) ↪ false;
symbol isZneg : ℤ → 𝔹;
rule isZneg Z0 ↪ false
with isZneg (Zpos _) ↪ false
with isZneg (Zneg _) ↪ true;
// Discriminate constructors
symbol Zpos≠Z0 p : π (Zpos p ≠ Z0) ≔
begin
assume n h; refine ind_eq h (λ n, istrue(isZ0 n)) ⊤ᵢ
end;
symbol Zneg≠Z0 p : π (Zneg p ≠ Z0) ≔
begin
assume n h; refine ind_eq h (λ n, istrue(isZ0 n)) ⊤ᵢ
end;
symbol Zpos≠Zneg p q : π (Zpos p ≠ Zneg q) ≔
begin
assume x y h; refine ind_eq h (λ n, istrue(isZneg n)) ⊤ᵢ
end;
// Unary opposite
symbol — : ℤ → ℤ;
notation — prefix 24;
rule — Z0 ↪ Z0
with — (Zpos $p) ↪ Zneg $p
with — (Zneg $p) ↪ Zpos $p;
symbol —_idem z : π (— — z = z) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
// Doubling functions
symbol double : ℤ → ℤ;
rule double Z0 ↪ Z0
with double (Zpos $p) ↪ Zpos (O $p)
with double (Zneg $p) ↪ Zneg (O $p);
symbol succ_double : ℤ → ℤ;
rule succ_double Z0 ↪ Zpos H
with succ_double (Zpos $p) ↪ Zpos (I $p)
with succ_double (Zneg $p) ↪ Zneg (pos_pred_double $p);
symbol pred_double : ℤ → ℤ;
rule pred_double Z0 ↪ Zneg H
with pred_double (Zpos $p) ↪ Zpos (pos_pred_double $p)
with pred_double (Zneg $p) ↪ Zneg (I $p);
// Interaction of opp and doubling functions
symbol double_opp z : π (double (— z) = — double z) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol succ_double_opp z : π (succ_double (— z) = — pred_double z) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol pred_double_opp z : π (pred_double (— z) = — succ_double z) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
// Binary negation on ℙ
symbol sub : ℙ → ℙ → ℤ;
rule sub (I $p) (I $q) ↪ double (sub $p $q)
with sub (I $p) (O $q) ↪ succ_double (sub $p $q)
with sub (I $p) H ↪ Zpos (O $p)
with sub (O $p) (I $q) ↪ pred_double (sub $p $q)
with sub (O $p) (O $q) ↪ double (sub $p $q)
with sub (O $p) H ↪ Zpos (pos_pred_double $p)
with sub H (I $q) ↪ Zneg (O $q)
with sub H (O $q) ↪ Zneg (pos_pred_double $q)
with sub H H ↪ Z0;
symbol sub_same z : π (sub z z = Z0) ≔
begin
induction
{ assume x xrec; simplify; rewrite xrec; reflexivity }
{ assume x xrec; simplify; rewrite xrec; reflexivity }
{ reflexivity }
end;
symbol sub_opp x y : π (— sub x y = sub y x) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h; simplify; rewrite left xrec y; rewrite double_opp; reflexivity }
{ assume y h; simplify; rewrite left xrec y; rewrite pred_double_opp; reflexivity }
{ reflexivity } }
// case O
{ assume x xrec;
induction
{ assume y h; simplify; rewrite left xrec y; rewrite succ_double_opp; reflexivity }
{ assume y h; simplify; rewrite left xrec y; rewrite double_opp; reflexivity }
{ reflexivity } }
// case H
{ induction { reflexivity } { reflexivity } { reflexivity } }
end;
// Addition of integers
symbol + : ℤ → ℤ → ℤ;
notation + infix right 20;
rule Z0 + $y ↪ $y
with $x + Z0 ↪ $x
with Zpos $x + Zpos $y ↪ Zpos (add $x $y)
with Zpos $x + Zneg $y ↪ sub $x $y
with Zneg $x + Zpos $y ↪ sub $y $x
with Zneg $x + Zneg $y ↪ Zneg (add $x $y);
// Interaction of addition with opposite
symbol distr_—_+ x y : π (— (x + y) = — x + — y) ≔
begin
induction
// case Z0
{ reflexivity }
// case Zpos
{ assume x;
induction
{ reflexivity }
{ reflexivity }
{ assume y; simplify; rewrite sub_opp; reflexivity } }
// case Zneg
{ assume x;
induction
{ reflexivity }
{ assume y; simplify; rewrite sub_opp; reflexivity }
{ reflexivity } }
end;
// Commutativity of addition
symbol +_com x y : π (x + y = y + x) ≔
begin
induction
// case Z0
{ induction { reflexivity } { reflexivity } { reflexivity } }
// case Zpos
{ assume x;
induction
{ reflexivity }
{ assume y; simplify; rewrite add_com; reflexivity }
{ reflexivity } }
// case Zneg
{ assume x;
induction
{ reflexivity }
{ reflexivity }
{ assume y; simplify; rewrite add_com; reflexivity } }
end;
// Interaction of succ and doubling functions
symbol pred_double_succ x : π (pred_double (x + Zpos H) = succ_double x) ≔
begin
induction
{ reflexivity }
{ assume x; simplify; rewrite pos_pred_double_succ; reflexivity }
{ induction { reflexivity } { reflexivity } { reflexivity } }
end;
symbol succ_pred_double x : π (pred_double x + Zpos H = double x) ≔
begin
induction
{ reflexivity }
{ assume x; simplify; rewrite succ_pos_pred_double; reflexivity }
{ reflexivity }
end;
symbol succ_double_carac x : π (succ_double x = double x + Zpos H) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol double_succ x : π (double (x + Zpos H) = succ_double x + Zpos H) ≔
begin
induction
{ reflexivity }
{ reflexivity }
{ induction { reflexivity } { reflexivity } { reflexivity } }
end;
// Negation
symbol - x y ≔ x + — y;
notation - infix left 20;
symbol -_same z : π (z + — z = Z0) ≔
begin
induction
{ reflexivity }
{ simplify; refine sub_same }
{ simplify; refine sub_same }
end;
// Associativity
symbol sub_succ x y : π (sub (succ x) y = sub x y + Zpos H) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h; simplify; rewrite xrec; rewrite pred_double_succ;
rewrite succ_double_carac; reflexivity }
{ assume y h; simplify; rewrite xrec; rewrite double_succ; reflexivity }
{ simplify; rewrite pos_pred_double_succ; reflexivity } }
// case O
{ assume x xrec;
induction
{ assume y h; simplify; rewrite left succ_pred_double; reflexivity }
{ assume y h; simplify; rewrite succ_double_carac; reflexivity }
{ simplify; rewrite succ_pos_pred_double; reflexivity } }
// case H
{ induction
{ induction { reflexivity } { reflexivity } { reflexivity } }
{ induction { reflexivity } { reflexivity } { reflexivity } }
{ reflexivity } }
end;
symbol add_Zpos_succ x p : π (x + Zpos (succ p) = (x + Zpos p) + Zpos H) ≔
begin
induction
{ reflexivity }
{ assume x p; simplify; rewrite add_succ_right; reflexivity }
{ assume x p; simplify; rewrite sub_succ; reflexivity }
end;
symbol sub_add_Zpos a b c : π (sub a b + Zpos c = sub (add a c) b) ≔
begin
assume a b c;
refine ind_ℙeano (λ c, sub a b + Zpos c = sub (add a c) b) _ _ c
// case H
{ simplify; rewrite sub_succ; reflexivity }
// case succ
{ assume r rrec; rewrite add_Zpos_succ; rewrite rrec;
rewrite add_succ_right; rewrite sub_succ; reflexivity }
end;
symbol sub_add_Zneg a b c : π (sub a b + Zneg c = sub a (add b c)) ≔
begin
assume a b c;
rewrite left sub_opp (add b c) a;
rewrite left sub_add_Zpos;
rewrite distr_—_+; rewrite sub_opp; reflexivity;
end;
symbol +_assoc x y z : π ((x + y) + z = x + (y + z)) ≔
begin
induction
{ reflexivity }
{ assume x;
induction
{ reflexivity }
{ assume y;
induction
{ reflexivity }
// case Zpos - Zpos - Zpos
{ assume z; simplify; rewrite add_assoc; reflexivity }
// case Zpos - Zpos - Zneg
{ assume z; simplify; rewrite +_com; rewrite sub_add_Zpos;
rewrite add_com; reflexivity } }
{ assume y;
induction
{ reflexivity }
// case Zpos - Zneg - Zpos
{ assume z; simplify; rewrite sub_add_Zpos; rewrite +_com;
rewrite sub_add_Zpos; rewrite add_com; reflexivity }
// case Zpos - Zneg - Zneg
{ assume z; simplify; rewrite sub_add_Zneg; reflexivity } } }
{ assume x;
induction
{ reflexivity }
{ assume y;
induction
{ reflexivity }
// case Zneg - Zpos - Zpos
{ assume z; simplify; rewrite sub_add_Zpos; reflexivity }
// case Zneg - Zpos - Zneg
{ assume z; simplify; rewrite sub_add_Zneg; rewrite +_com;
rewrite sub_add_Zneg; rewrite add_com; reflexivity } }
{ assume y;
induction
{ reflexivity }
// case Zneg - Zneg - Zpos
{ assume z; simplify; rewrite +_com; rewrite sub_add_Zneg;
rewrite add_com; reflexivity }
// case Zneg - Zneg - Zneg
{ assume z; simplify; rewrite add_assoc; reflexivity } } }
end;
// Comparison of integers
require open Stdlib.Comp;
symbol ≐ : ℤ → ℤ → Comp; notation ≐ infix 12; // \doteq
rule Z0 ≐ Z0 ↪ Eq
with Z0 ≐ Zpos _ ↪ Lt
with Z0 ≐ Zneg _ ↪ Gt
with Zpos _ ≐ Z0 ↪ Gt
with Zpos $p ≐ Zpos $q ↪ compare $p $q
with Zpos _ ≐ Zneg _ ↪ Gt
with Zneg _ ≐ Z0 ↪ Lt
with Zneg _ ≐ Zpos _ ↪ Lt
with Zneg $p ≐ Zneg $q ↪ compare $q $p;
// ≐ decides the equality of integers
symbol ≐_decides x y : π (x ≐ y = Eq ⇒ x = y) ≔
begin
induction
// case Z0
{ induction
{ reflexivity }
{ assume y H; apply ⊥ₑ; refine Lt≠Eq H }
{ assume y H; apply ⊥ₑ; refine Gt≠Eq H } }
// case Zpos
{ assume x;
induction
{ assume H; apply ⊥ₑ; refine Gt≠Eq H }
{ assume y H; rewrite compare_decides x y H; reflexivity }
{ assume y H; apply ⊥ₑ; refine Gt≠Eq H } }
// case Zneg
{ assume x;
induction
{ assume H; apply ⊥ₑ; refine Lt≠Eq H }
{ assume y H; apply ⊥ₑ; refine Lt≠Eq H }
{ assume y H; rewrite compare_decides y x H; reflexivity } }
end;
// Commutative properties of ≐
symbol ≐_com x y : π (x ≐ y = opp (y ≐ x)) ≔
begin
induction
// case Z0
{ induction { reflexivity } { reflexivity } { reflexivity } }
// case Zpos
{ assume x;
induction
{ reflexivity }
{ assume y; simplify; rewrite compare_acc_com; reflexivity }
{ reflexivity } }
// case Zneg
{ assume x;
induction
{ reflexivity }
{ reflexivity }
{ assume y; simplify; rewrite compare_acc_com; reflexivity } }
end;
symbol ≐_opp x y : π (— x ≐ — y = opp (x ≐ y)) ≔
begin
induction
// case Z0
{ induction { reflexivity } { reflexivity } { reflexivity } }
// case Zpos
{ assume x;
induction
{ reflexivity }
{ assume y; simplify; rewrite compare_acc_com; reflexivity }
{ reflexivity } }
// case Zneg
{ assume x;
induction
{ reflexivity }
{ reflexivity }
{ assume y; simplify; rewrite compare_acc_com; reflexivity } }
end;
// General results
symbol simpl_right x a : π ((x + a) - a = x) ≔
begin
assume x a; simplify; rewrite +_assoc;
rewrite -_same; reflexivity;
end;
symbol simpl_inv_right x a : π ((x - a) + a = x) ≔
begin
assume x a; simplify; rewrite +_assoc;
rewrite .[— a + a] +_com; rewrite -_same; reflexivity;
end;
// ≐ with 0
symbol ≐_double x : π ((double x ≐ Z0) = (x ≐ Z0)) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol ≐_pred_double x :
π (pred_double x ≐ Z0 = case_Comp (x ≐ Z0) Lt Lt Gt) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol ≐_succ_double x :
π (succ_double x ≐ Z0 = case_Comp (x ≐ Z0) Gt Lt Gt) ≔
begin
induction { reflexivity } { reflexivity } { reflexivity }
end;
symbol ≐_pos_sub x y : π ((sub x y ≐ Z0) = compare x y) ≔
begin
induction
// case I
{ assume x xrec;
induction
{ assume y h; simplify; rewrite ≐_double; refine xrec y }
{ assume y h; simplify; rewrite ≐_succ_double; rewrite xrec;
rewrite compare_Gt; reflexivity }
{ reflexivity } }
// case O
{ assume x xrec;
induction
{ assume y h; simplify; rewrite ≐_pred_double; rewrite xrec;
rewrite compare_Lt; reflexivity }
{ assume y h; simplify; rewrite ≐_double; refine xrec y }
{ reflexivity } }
// case H
{ induction { reflexivity } { reflexivity } { reflexivity } }
end;
symbol ≐_sub x y : π ((x ≐ y) = (x + — y ≐ Z0)) ≔
begin
induction
// case Z0
{ induction { reflexivity } { reflexivity } { reflexivity } }
// case Zpos
{ assume x;
induction
{ reflexivity }
{ assume y; simplify; rewrite ≐_pos_sub; reflexivity }
{ reflexivity } }
// case Zneg
{ assume x;
induction
{ reflexivity }
{ reflexivity }
{ assume y; simplify; rewrite ≐_pos_sub; reflexivity } }
end;
// Compatibility of comparison with the addition
symbol ≐_compat_add x y z : π ((x ≐ y) = (x + z ≐ y + z)) ≔
begin
assume x y z;
rewrite ≐_sub; rewrite .[x in _ = x] ≐_sub;
simplify; rewrite distr_—_+; rewrite .[— y + — z] +_com;
rewrite +_assoc; rewrite left +_assoc z (— z) (— y);
rewrite -_same z; reflexivity;
end;
// Directional comparison operators
symbol ≤ x y ≔ ¬ (istrue(isGt (x ≐ y)));
notation ≤ infix 10;
symbol < x y ≔ istrue(isLt (x ≐ y));
notation < infix 10;
symbol ≥ x y ≔ ¬ (x < y);
notation ≥ infix 10;
symbol > x y ≔ ¬ (x ≤ y);
notation > infix 10;
symbol <_≤ x y : π (x < y ⇒ x ≤ y) ≔
begin
assume x y;
refine ind_Comp (λ u, istrue(isLt u) ⇒ istrue(isGt u) ⇒ ⊥) _ _ _ (x ≐ y)
{ refine (λ x _, x) }
{ refine (λ _ y, y) }
{ refine (λ x _, x) }
end;
// Compatibility of directional comparison operators
symbol ≤_compat_add x y a : π (x ≤ y ⇒ x + a ≤ y + a) ≔
begin
assume x y a; simplify;
assume H; refine fold_⇒ _; rewrite ≐_sub;
simplify; refine fold_⇒ _; rewrite +_assoc;
rewrite .[y + a] +_com; rewrite distr_—_+;
rewrite left +_assoc a (— a) (— y); rewrite -_same;
rewrite left +_assoc x Z0 (— y); simplify; refine fold_⇒ _;
rewrite left ≐_sub x y; refine H;
end;
symbol <_compat_add x y a : π (x < y ⇒ x + a < y + a) ≔
begin
assume x y a; simplify; assume H; rewrite ≐_sub;
simplify; rewrite +_assoc; rewrite .[y + a] +_com;
rewrite distr_—_+; rewrite left +_assoc a (— a) (— y);
rewrite -_same; rewrite left +_assoc;
simplify; rewrite left ≐_sub; refine H;
end;
symbol ≤_compat_≤ x y : π (Z0 ≤ x ⇒ Z0 ≤ y ⇒ Z0 ≤ x + y) ≔
begin
induction
{ assume y h H; refine H }
{ assume x;
induction
{ assume h1 h2; refine λ x, x; }
{ assume y h h'; refine λ x, x }
{ simplify; assume y h f; apply ⊥ₑ; refine f ⊤ᵢ } }
{ assume x y f h; apply ⊥ₑ; refine f ⊤ᵢ }
end;
symbol <_compat_≤ x y : π (Z0 < x ⇒ Z0 ≤ y ⇒ Z0 < x + y) ≔
begin
induction
{ assume y f h; apply ⊥ₑ; refine f }
{ assume x;
induction
{ assume h1 h2; refine ⊤ᵢ }
{ assume y h h'; refine ⊤ᵢ }
{ simplify; assume y h f; apply ⊥ₑ; refine f ⊤ᵢ } }
{ assume x; assume y f h; apply ⊥ₑ; refine f }
end;
// Reflexivity
symbol ≤_refl x : π (x ≤ x) ≔
begin
assume x; refine ≤_compat_add Z0 Z0 x _; refine (λ x, x);
end;
// Antisymmetry
symbol ≤_antisym x y : π (x ≤ y ⇒ y ≤ x ⇒ x = y) ≔
begin
assume x y;
have e : π (¬ (istrue(isGt (x ≐ y))) ⇒ ¬ (istrue(isGt (y ≐ x))) ⇒ x = y)
{ rewrite ≐_com } ;
refine ind_Comp (λ c, (y ≐ x) = c ⇒ ¬ (istrue(isGt (opp c))) ⇒ ¬ (istrue(isGt c)) ⇒ x = y) _ _ _ (y ≐ x) _
{ assume H h1 h2; symmetry; refine ≐_decides y x H }
{ assume h1 f h2; apply ⊥ₑ; refine f ⊤ᵢ }
{ assume h1 h2 f; apply ⊥ₑ; refine f ⊤ᵢ }
{ reflexivity; refine e }
end;
// Transitivity theorems
symbol ≤_trans x y z : π (x ≤ y ⇒ y ≤ z ⇒ x ≤ z) ≔
begin
assume x y z lxy lyz;
have H : π (Z0 ≤ (z + — y) + (y + — x))
{ refine ≤_compat_≤ (z - y) (y - x) _ _
{ rewrite left -_same y; refine ≤_compat_add y z (— y) _; refine lyz }
{ rewrite left -_same x; refine ≤_compat_add x y (— x) _; refine lxy } } ;
generalize H; refine fold_⇒ _;
rewrite +_assoc; rewrite left +_assoc (— y) y (— x);
rewrite .[— y + y] +_com; rewrite -_same;
refine (λ p : π ((Z0 ≤ (z + — x)) ⇒ (x ≤ z)), p) _;
rewrite left .[in x ≤ z] simpl_inv_right z x;
refine ≤_compat_add Z0 (z - x) x;
end;
symbol <_trans_1 x y z : π (x < y ⇒ y ≤ z ⇒ x < z) ≔
begin
assume x y z lxy lyz;
have H : π (Z0 < (z + — y) + (y + — x))
{ rewrite +_com; apply <_compat_≤ (y - x) (z - y)
{ rewrite left -_same x; refine <_compat_add x y (— x) _; refine lxy }
{ rewrite left -_same y; refine ≤_compat_add y z (— y) _; refine lyz } } ;
generalize H; refine fold_⇒ _;
rewrite +_assoc; rewrite left +_assoc (— y) y (— x);
rewrite .[— y + y] +_com; rewrite -_same;
rewrite left .[in x < z] simpl_inv_right z x;
refine <_compat_add Z0 (z - x) x;
end;
symbol <_trans_2 x y z : π (x ≤ y ⇒ y < z ⇒ x < z) ≔
begin
assume x y z lxy lyz;
have H : π (Z0 < (z + — y) + (y + — x))
{ apply <_compat_≤ (z - y) (y - x)
{ rewrite left -_same y; refine <_compat_add y z (— y) _; refine lyz }
{ rewrite left -_same x; refine ≤_compat_add x y (— x) _; refine lxy } };
generalize H; refine fold_⇒ _;
rewrite +_assoc; rewrite left +_assoc (— y) y (— x);
rewrite .[— y + y] +_com; rewrite -_same;
rewrite left .[in x < z] simpl_inv_right z x;
refine <_compat_add Z0 (z - x) x;
end;
// Multiplication
symbol * : ℤ → ℤ → ℤ;
notation * infix right 22;
rule Z0 * _ ↪ Z0
with _ * Z0 ↪ Z0
with Zpos $x * Zpos $y ↪ Zpos (mul $x $y)
with Zpos $x * Zneg $y ↪ Zneg (mul $x $y)
with Zneg $x * Zpos $y ↪ Zneg (mul $x $y)
with Zneg $x * Zneg $y ↪ Zpos (mul $x $y);
// TO BE CONTINUED (theorems about multiplication)
// shortcuts
symbol _1 ≔ Zpos _1;
symbol _2 ≔ Zpos _2;
symbol _3 ≔ Zpos _3;
symbol _4 ≔ Zpos _4;
symbol _5 ≔ Zpos _5;
symbol _6 ≔ Zpos _6;
symbol _7 ≔ Zpos _7;
symbol _8 ≔ Zpos _8;
symbol _9 ≔ Zpos _9;
symbol _10 ≔ Zpos _10;
// enable printing of integers in decimal notation
builtin "int_zero" ≔ Z0;
builtin "int_positive" ≔ Zpos;
builtin "int_negative" ≔ Zneg;
compute _2 - _3;
// enable parsing of integers in decimal notation
builtin "0" ≔ Z0;
builtin "1" ≔ _1;
builtin "2" ≔ _2;
builtin "3" ≔ _3;
builtin "4" ≔ _4;
builtin "5" ≔ _5;
builtin "6" ≔ _6;
builtin "7" ≔ _7;
builtin "8" ≔ _8;
builtin "9" ≔ _9;
builtin "10" ≔ _10;
builtin "+" ≔ +;
builtin "*" ≔ *;
builtin "-" ≔ —;
type -42;