-
Notifications
You must be signed in to change notification settings - Fork 37
/
generate.py
213 lines (163 loc) · 8.76 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import json
import torch
import numpy as np
from tqdm import tqdm
import argparse
from utils import image_proc
from model.model import DeformNet
from model import dataset
import utils.utils as utils
import utils.viz_utils as viz_utils
import utils.nnutils as nnutils
import utils.line_mesh as line_mesh_utils
import options as opt
def main():
#####################################################################################################
# Options
#####################################################################################################
# Parse command line arguments.
parser = argparse.ArgumentParser()
parser.add_argument('--split', help='Data split', choices=['val', 'test'], required=True)
args = parser.parse_args()
split = args.split
# Model checkpoint to use
saved_model = opt.saved_model
# Dataset dir
dataset_base_dir = opt.dataset_base_dir
# Image dimensiones to which we crop the input images, such that they are divisible by 64
image_height = opt.image_height
image_width = opt.image_width
if opt.gn_max_matches_eval != 100000:
opt.gn_max_matches_eval = 100000
if opt.threshold_mask_predictions:
opt.threshold_mask_predictions = False
#####################################################################################################
# Read labels and assert existance of output dir
#####################################################################################################
labels_json = os.path.join(dataset_base_dir, f"{split}_graphs.json")
assert os.path.isfile(labels_json), f"{labels_json} does not exist! Make sure you specified the correct 'data_root_dir'."
with open(labels_json, 'r') as f:
labels = json.loads(f.read())
# Output dir
output_dir = os.path.join(opt.experiments_dir, "models", opt.model_name)
output_dir = f"{output_dir}/evaluation/{split}"
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
print("Created output dir", output_dir)
print()
#####################################################################################################
# Model
#####################################################################################################
assert os.path.isfile(saved_model), f"Model {saved_model} does not exist."
pretrained_dict = torch.load(saved_model)
# Construct model
model = DeformNet().cuda()
if "chairs_things" in saved_model:
model.flow_net.load_state_dict(pretrained_dict)
else:
if opt.model_module_to_load == "full_model":
# Load completely model
model.load_state_dict(pretrained_dict)
elif opt.model_module_to_load == "only_flow_net":
# Load only optical flow part
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if "flow_net" in k}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)
else:
print(opt.model_module_to_load, "is not a valid argument (A: 'full_model', B: 'only_flow_net')")
exit()
model.eval()
#####################################################################################################
# Go over dataset
#####################################################################################################
for label in tqdm(labels):
src_color_image_path = os.path.join(opt.dataset_base_dir, label["source_color"])
src_depth_image_path = os.path.join(opt.dataset_base_dir, label["source_depth"])
tgt_color_image_path = os.path.join(opt.dataset_base_dir, label["target_color"])
tgt_depth_image_path = os.path.join(opt.dataset_base_dir, label["target_depth"])
graph_nodes_path = os.path.join(opt.dataset_base_dir, label["graph_nodes"])
graph_edges_path = os.path.join(opt.dataset_base_dir, label["graph_edges"])
graph_edges_weights_path = os.path.join(opt.dataset_base_dir, label["graph_edges_weights"])
graph_clusters_path = os.path.join(opt.dataset_base_dir, label["graph_clusters"])
pixel_anchors_path = os.path.join(opt.dataset_base_dir, label["pixel_anchors"])
pixel_weights_path = os.path.join(opt.dataset_base_dir, label["pixel_weights"])
intrinsics = label["intrinsics"]
print(src_color_image_path)
# Source color and depth
source, _, cropper = dataset.DeformDataset.load_image(
src_color_image_path, src_depth_image_path, intrinsics, image_height, image_width
)
source_points = np.copy(source[3:, :, :]) # 3, h, w
# Target color and depth (and boundary mask)
target, _, _ = dataset.DeformDataset.load_image(
tgt_color_image_path, tgt_depth_image_path, intrinsics, image_height, image_width, cropper=cropper,
max_boundary_dist=None, compute_boundary_mask=False
)
# Graph
graph_nodes, graph_edges, graph_edges_weights, _, graph_clusters, pixel_anchors, pixel_weights = dataset.DeformDataset.load_graph_data(
graph_nodes_path, graph_edges_path, graph_edges_weights_path, None,
graph_clusters_path, pixel_anchors_path, pixel_weights_path, cropper
)
num_nodes = np.array(graph_nodes.shape[0], dtype=np.int64)
# Update intrinsics to reflect the crops
fx, fy, cx, cy = image_proc.modify_intrinsics_due_to_cropping(
intrinsics['fx'], intrinsics['fy'], intrinsics['cx'], intrinsics['cy'],
image_height, image_width, original_h=cropper.h, original_w=cropper.w
)
intrinsics = np.zeros((4), dtype=np.float32)
intrinsics[0] = fx
intrinsics[1] = fy
intrinsics[2] = cx
intrinsics[3] = cy
#####################################################################################################
# Predict deformation
#####################################################################################################
# Move to device and unsqueeze in the batch dimension (to have batch size 1)
source_cuda = torch.from_numpy(source).cuda().unsqueeze(0)
target_cuda = torch.from_numpy(target).cuda().unsqueeze(0)
graph_nodes_cuda = torch.from_numpy(graph_nodes).cuda().unsqueeze(0)
graph_edges_cuda = torch.from_numpy(graph_edges).cuda().unsqueeze(0)
graph_edges_weights_cuda = torch.from_numpy(graph_edges_weights).cuda().unsqueeze(0)
graph_clusters_cuda = torch.from_numpy(graph_clusters).cuda().unsqueeze(0)
pixel_anchors_cuda = torch.from_numpy(pixel_anchors).cuda().unsqueeze(0)
pixel_weights_cuda = torch.from_numpy(pixel_weights).cuda().unsqueeze(0)
intrinsics_cuda = torch.from_numpy(intrinsics).cuda().unsqueeze(0)
num_nodes_cuda = torch.from_numpy(num_nodes).cuda().unsqueeze(0)
with torch.no_grad():
model_data = model(
source_cuda, target_cuda,
graph_nodes_cuda, graph_edges_cuda, graph_edges_weights_cuda, graph_clusters_cuda,
pixel_anchors_cuda, pixel_weights_cuda,
num_nodes_cuda, intrinsics_cuda,
evaluate=True, split="test"
)
# Get predicted graph deformation
node_rotations_pred = model_data["node_rotations"].view(num_nodes, 3, 3).cpu().numpy()
node_translations_pred = model_data["node_translations"].view(num_nodes, 3).cpu().numpy()
# Warp source points with predicted graph deformation
warped_source_points = image_proc.warp_deform_3d(
source, pixel_anchors, pixel_weights, graph_nodes, node_rotations_pred, node_translations_pred
)
# Compute dense 3d flow
scene_flow_pred = warped_source_points - source_points
# Save predictions
seq_id = label["seq_id"]
object_id = label["object_id"]
source_id = label["source_id"]
target_id = label["target_id"]
sample_name = f"{seq_id}_{object_id}_{source_id}_{target_id}"
node_translations_pred_file = os.path.join(output_dir, f"{sample_name}_node_translations.bin")
scene_flow_pred_file = os.path.join(output_dir, f"{sample_name}_sceneflow.sflow")
utils.save_graph_node_deformations(
node_translations_pred_file, node_translations_pred
)
utils.save_flow(
scene_flow_pred_file, scene_flow_pred
)
if __name__ == "__main__":
main()