-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_model.py
156 lines (126 loc) · 4.81 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import print_function
import tensorflow as tf
import numpy as np
from PIL import Image
import face_recognition
import os
# Parameters
learning_rate = 0.001
training_iters = 3000
batch_size = 20
display_step = 1
# Network Parameters
n_input = 128*128 # Cropped Image data input (img shape: 128*128 )
n_classes = 10 # Total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32, [None, 128, 128, 3])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
#Cropped Images Directory
RAW_IMG_DIC = './test_images/'
CROPPED_IMG_DIC = './test_images_cropped/'
# Store layers weight & bias
weights = {
# 5x5 conv, 3 input, 16 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 3, 16])),
# 5x5 conv, 16 inputs, 32 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 16, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc3': tf.Variable(tf.random_normal([5, 5, 32 ,64])),
# fully connected, 32*32*96 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([16*16*64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([16])),
'bc2': tf.Variable(tf.random_normal([32])),
'bc3': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
def crop_face(raw_img_file):
"""Find all the faces and crop the file in images folder to 128 * 128
"""
print('---------------------------')
print('Processing image {}'.format(raw_img_file))
raw_img = face_recognition.load_image_file(RAW_IMG_DIC + raw_img_file)
face_locations = face_recognition.face_locations(raw_img)
print('{} faces found in this image'.format(len(face_locations)))
count = 0
for face_loc in face_locations:
top, right, bottom, left = face_loc
img_save_name = '{}_{}'.format(str(count), raw_img_file)
face_img = raw_img[top:bottom, left:right]
pil_image = Image.fromarray(face_img)
resized_img = pil_image.resize((128,128))
resized_img.save(CROPPED_IMG_DIC + img_save_name)
def crop_all():
raw_img_list = os.listdir(RAW_IMG_DIC)
for f_name in raw_img_list:
if '.png' in f_name:
crop_face(f_name)
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
def conv_net(x, weights, biases, dropout):
#Reshape input picture
x = tf.reshape(x, shape=[-1, 128, 128, 3])
#Conv Layer and ReLU #1
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
print(conv1.shape)
#Max Pool #1
mp1 = maxpool2d(conv1, k = 2)
#Conv Layer and ReLU #2
conv2 = conv2d(mp1, weights['wc2'], biases['bc2'])
print(conv2.shape)
#Max Pool #2
mp2 = maxpool2d(conv2, k = 2)
#Conv Layer and ReLU #3
conv3 = conv2d(mp2, weights['wc3'], biases['bc3'])
print(conv3.shape)
#Max Pool #3
mp3 = maxpool2d(conv3, k = 2)
#Fully Connected Neural Network #1
fc1 = tf.reshape(mp3, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
#Dropout Layer
fc1 = tf.nn.dropout(fc1, dropout)
#Fully Connected Neural Network #2 Output Layer
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
pred_result=tf.argmax(pred, 1)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
saver=tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, './model.ckpt')
crop_all()
xs = []
fnames = os.listdir(CROPPED_IMG_DIC)
for fname in fnames:
img = Image.open(CROPPED_IMG_DIC + fname)
img_ndarray = np.asarray(img, dtype='float32')
img_ndarray = np.reshape(img_ndarray, [128, 128, 3])
xs.append(img_ndarray)
xs = np.asarray(xs)
print(xs.shape)
max_index=sess.run(pred_result, feed_dict={x: xs, keep_prob: 1.})
for i in range(0, len(fnames)):
print('File: {} Result: {}'.format(fnames[i], max_index[i] + 1))