forked from KalyanM45/Heart-Disease-Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
46 lines (40 loc) · 1.69 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from flask import Flask, request, render_template
from src.Heart.pipeline.Prediction_pipeline import CustomData, PredictPipeline
app = Flask(__name__)
# Define the home route
@app.route("/", methods=["GET", "POST"])
def home():
if request.method == "POST":
try:
# Validate and convert form data to CustomData object
data = CustomData(
age=request.form.get("age"),
sex=request.form.get("sex"),
cp=(request.form.get("cp")),
trestbps=(request.form.get("trestbps")),
chol=(request.form.get("chol")),
fbs=request.form.get("fbs"),
restecg=request.form.get("restecg"),
thalach=(request.form.get("thalach")),
exang=request.form.get("exang"),
oldpeak=request.form.get("oldpeak"),
slope=request.form.get("slope"),
ca=request.form.get("ca"),
thal=(request.form.get("thal"))
)
final_data = data.get_data_as_dataframe()
# Make prediction
predict_pipeline = PredictPipeline()
pred = predict_pipeline.predict(final_data)
result = round(pred[0], 2)
return render_template("result.html", final_result=result)
except Exception as e:
# Handle exceptions gracefully
error_message = f"Error during prediction: {str(e)}"
return render_template("error.html", error_message=error_message)
else:
# Render the initial page
return render_template("index.html")
# Execution begins
if __name__ == '__main__':
app.run(host="0.0.0.0", port=8080, debug=True)