-
Notifications
You must be signed in to change notification settings - Fork 1
/
config.py
48 lines (36 loc) · 2.8 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# ----------------------------------------------Import required Modules----------------------------------------------- #
import os
# ----------------------------------------------Set File Paths-------------------------------------------------------- #
# Colab
# TAXONOMY_FILE_PATH = '/content/drive/My Drive/3DR/src/ShapeNet_mid_2_other.json'
# RENDERING_PATH = '/content/drive/My Drive/3DR/Datasets/ShapeNetRendering/{}/{}/rendering'
# VOXEL_PATH = '/content/drive/My Drive/3DR/Datasets/ShapeNetVox32/{}/{}/model.binvox'
# Dhruv
# TAXONOMY_FILE_PATH = 'E:\\Projects\\3D_Reconstruction\\src\\ShapeNet_mid_2_other.json' # 'E:\\Projects\\3D_Reconstruction\\3DR_src\\ShapeNet_original.json' # 'E:\\Projects\\3D_Reconstruction\\3DR_src\\ShapeNet.json'
# RENDERING_PATH = 'E:\\Datasets\\3D_Reconstruction\ShapeNetRendering\\{}\\{}\\rendering'
# VOXEL_PATH = 'E:\\Datasets\\3D_Reconstruction\ShapeNetVox32\\{}\\{}\\model.binvox'
# Inference
# RENDERING_PATH = os.path.join('E:\\Datasets\\3D_Reconstruction\Inference\Rendered Image', os.listdir('E:\\Datasets\\3D_Reconstruction\Inference\Rendered Image')[0])
# GROUND_TRUTH_PATH = os.path.join('E:\\Datasets\\3D_Reconstruction\Inference\Ground Truth', os.listdir('E:\\Datasets\\3D_Reconstruction\Inference\Ground Truth')[0])
# VOXEL_SAVE_PATH = os.path.join('E:\\Datasets\\3D_Reconstruction\Inference')
# Suraj
TAXONOMY_FILE_PATH = 'C:\\Users\\bidnu\\Documents\\Suraj_Docs\\3D_Project\\ShapeNet_P2V\\ShapeNet.json'
RENDERING_PATH = 'C:\\Users\\bidnu\\Documents\\Suraj_Docs\\3D_Project\\ShapeNet_P2V\\ShapeNetRendering\\{}\\{}\\rendering'
VOXEL_PATH = 'C:\\Users\\bidnu\\Documents\\Suraj_Docs\\3D_Project\\ShapeNet_P2V\\ShapeNetVox32\\{}\\{}\\model.binvox'
# Rishab
# TAXONOMY_FILE_PATH = 'D:\\P2V\\Pix2Vox-master\\datasets\\ShapeNet_test_v3.json'
# RENDERING_PATH = 'D:\\ShapeNet_new\\ShapeNetRendering\\{}\\{}\\rendering'
# VOXEL_PATH = 'D:\\ShapeNet_new\\ShapeNetVox32\\{}\\{}\\model.binvox'
# VM
# TAXONOMY_FILE_PATH = '/home/drs/3D_Project/src/ShapeNet_original.json'
# RENDERING_PATH = '/home/drs/3D_Project/datasets/ShapeNet/ShapeNetRendering/{}/{}/rendering'
# VOXEL_PATH = '/home/drs/3D_Project/datasets/ShapeNet/ShapeNetVox32/{}/{}/model.binvox'
# ----------------------------------------------Training Configuration------------------------------------------------ #
input_shape = (224, 224, 3) # input shape
encoder_cnn = "vgg" # pre-trained encoder cnn (vgg, resnet or densenet)
batch_size = 32 # batch size
epochs = 100 #250 # Number of epochs
learning_rate = 0.001 # Learning rate
boundaries = [150] # Boundary epoch for learning rate scheduler
model_save_frequency = 5 #10 # Save model every n epochs (specify n)
checkpoint_path = os.path.join(os.getcwd(), 'saved_models') # Model save path