-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid.cpp
238 lines (205 loc) · 4.89 KB
/
grid.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#include "grid.h"
#include <stdio.h>
#include <string>
Grid::Grid(unsigned int width, unsigned int height, IRuleSet& ruleSet) :
mWidth(width),
mHeight(height),
mLastX(-1),
mLastY(-1),
mGrid(new unsigned int* [mWidth]),
mRuleSet(ruleSet)
{
for(unsigned int w = 0; w < mWidth; ++w)
{
mGrid[w] = new unsigned int[mHeight];
for (unsigned int h = 0; h < mHeight; ++h)
{
mGrid[w][h] = (unsigned int)-1;
}
}
}
Grid::~Grid()
{
delete [] mGrid;
}
void Grid::Start(unsigned int x, unsigned int y)
{
if (x >= mWidth || y >= mHeight)
{
return;
}
if (mLastX == (unsigned int)-1 || mLastY == (unsigned int)-1)
{
mGrid[x][y] = 1;
mLastX = x;
mLastY = y;
}
// Calling Start a second time has no effect
}
bool Grid::Test(Direction direction)
{
if (mLastX == (unsigned int)-1 || mLastY == (unsigned int)-1)
{
return false;
}
int nextX = mRuleSet.NextX(mLastX, direction);
int nextY = mRuleSet.NextY(mLastY, direction);
if (nextX >= 0 && (unsigned int)nextX < mWidth && nextY >= 0 && (unsigned int)nextY < mHeight)
{
if (mGrid[(unsigned int)nextX][(unsigned int)nextY] == (unsigned int)-1)
{
return true;
}
}
return false;
}
void Grid::Next(Direction direction)
{
if (!Test(direction))
{
return;
}
unsigned int nextNumber = mGrid[mLastX][mLastY] + 1;
int nextX = mRuleSet.NextX(mLastX, direction);
int nextY = mRuleSet.NextY(mLastY, direction);
if (nextX >= 0 && (unsigned int)nextX < mWidth && nextY >= 0 && (unsigned int)nextY < mHeight)
{
mGrid[(unsigned int)nextX][(unsigned int)nextY] = nextNumber;
mLastX = nextX;
mLastY = nextY;
}
}
void Grid::Previous()
{
if (mLastX == (unsigned int)-1 || mLastY == (unsigned int)-1)
{
return;
}
// Find the previous index by inspecting all directions.
for (int i = 0; i < 8; i ++)
{
Direction direction = static_cast<Direction>(i);
int nextX = mRuleSet.NextX(mLastX, direction);
int nextY = mRuleSet.NextY(mLastY, direction);
if (nextX >= 0 && (unsigned int)nextX < mWidth && nextY >= 0 && (unsigned int)nextY < mHeight)
{
if (mGrid[(unsigned int)nextX][(unsigned int)nextY] == mGrid[mLastX][mLastY] - 1)
{
mGrid[mLastX][mLastY] = -1;
mLastX = nextX;
mLastY = nextY;
return;
}
}
}
// If there's nothing to go back to, reset mLastX/mLastY to -1
mGrid[mLastX][mLastY] = -1;
mLastX = -1;
mLastY = -1;
}
bool Grid::CanContinue()
{
if (IsSolved())
{
return false;
}
if (mLastX == (unsigned int)-1 || mLastY == (unsigned int)-1)
{
// Game wasn't started yet, of course we can still continue.
return true;
}
// When are we sure that we can not continue?
// 1. When there are two or more cells that are not reachable from the last position, that have at most one free neighbour
int terminalCells = 0; // Number of cells that do not have at least two free neighbours and are not reachable from the last position
int emptyCells = 0;
for(unsigned int w = 0; w < mWidth; ++w)
{
for (unsigned int h = 0; h < mHeight; ++h)
{
// Only consider empty cells
if (mGrid[w][h] != (unsigned int)-1)
{
continue;
}
emptyCells++;
// Determine how many neighbours it can reach that are empty
// Note: This assumes symmetrical rules
int reachableNeighbours = 0;
bool lastCellReachable = false;
for (int i = 0; i < 8; i ++)
{
Direction direction = static_cast<Direction>(i);
int nextX = mRuleSet.NextX(w, direction);
int nextY = mRuleSet.NextY(h, direction);
if (nextX >= 0 && (unsigned int)nextX < mWidth && nextY >= 0 && (unsigned int)nextY < mHeight)
{
if (mGrid[(unsigned int)nextX][(unsigned int)nextY] == (unsigned int)-1)
{
reachableNeighbours++;
}
if ((unsigned int)nextX == mLastX && (unsigned int)nextY == mLastY)
{
lastCellReachable = true;
}
}
}
if (reachableNeighbours < 2 && lastCellReachable == false)
{
terminalCells++;
}
}
}
if (terminalCells > 1 || terminalCells == emptyCells)
{
return false;
}
else
{
return true;
}
}
bool Grid::IsSolved()
{
if (mWidth == 0 || mHeight == 0)
{
return true;
}
if (mLastX != (unsigned int)-1 && mLastY != (unsigned int)-1)
{
return mGrid[mLastX][mLastY] == mWidth * mHeight;
}
return false;
}
template <class T>
int numDigits(T number)
{
int digits = 0;
if (number < 0) digits = 1;
while (number) {
number /= 10;
digits++;
}
return digits;
}
void Grid::Print()
{
for (unsigned int h = 0; h < mHeight; ++h)
{
for(unsigned int w = 0; w < mWidth; ++w)
{
// Create the formatstring that prefixes the numbers with enough spaces to align the rows and columns
char buffer[10];
sprintf(buffer, "%%%ii ", numDigits(mWidth * mHeight));
buffer[10] = 0;
std::string foo;
foo.resize(10);
int num_bytes = snprintf(&foo[0], 10, "%%%ii ", numDigits(mWidth * mHeight));
if(num_bytes < 10)
{
foo.resize(num_bytes);
}
printf(foo.c_str(), mGrid[w][h]);
}
printf("\n");
}
}