forked from ananyahjha93/multi-level-vae
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclassification_accuracy.py
245 lines (180 loc) · 10.9 KB
/
classification_accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import argparse
from itertools import cycle
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets
from torch.autograd import Variable
from torch.utils.data import DataLoader
from utils import transform_config
from networks import Encoder, Decoder, Classifier
from utils import weights_init, accumulate_group_evidence, reparameterize, group_wise_reparameterize
parser = argparse.ArgumentParser()
# add arguments
parser.add_argument('--cuda', type=bool, default=False, help="run the following code on a GPU")
parser.add_argument('--accumulate_evidence', type=str, default=False, help="accumulate class evidence before producing swapped images")
parser.add_argument('--batch_size', type=int, default=128, help="batch size for training")
parser.add_argument('--image_size', type=int, default=28, help="height and width of the image")
parser.add_argument('--num_channels', type=int, default=1, help="number of channels in the image")
parser.add_argument('--num_classes', type=int, default=10, help="number of classes on which the data set trained")
parser.add_argument('--num_test_samples', type=int, default=10000, help="number of test samples")
parser.add_argument('--num_train_samples', type=int, default=60000, help="number of train samples")
parser.add_argument('--initial_learning_rate', type=float, default=0.0001, help="starting learning rate")
parser.add_argument('--beta_1', type=float, default=0.9, help="default beta_1 val for adam")
parser.add_argument('--beta_2', type=float, default=0.999, help="default beta_2 val for adam")
parser.add_argument('--style_dim', type=int, default=10, help="dimension of varying factor latent space")
parser.add_argument('--class_dim', type=int, default=10, help="dimension of common factor latent space")
# paths to save models
parser.add_argument('--encoder_save', type=str, default='encoder_1_var_reparam', help="model save for encoder")
parser.add_argument('--decoder_save', type=str, default='decoder_1_var_reparam', help="model save for decoder")
parser.add_argument('--end_iteration', type=int, default=100000, help="flag to indicate the final epoch of training")
FLAGS = parser.parse_args()
if __name__ == '__main__':
"""
model definitions
"""
encoder = Encoder(style_dim=FLAGS.style_dim, class_dim=FLAGS.class_dim)
decoder = Decoder(style_dim=FLAGS.style_dim, class_dim=FLAGS.class_dim)
encoder.load_state_dict(
torch.load(os.path.join('checkpoints', FLAGS.encoder_save), map_location=lambda storage, loc: storage))
decoder.load_state_dict(
torch.load(os.path.join('checkpoints', FLAGS.decoder_save), map_location=lambda storage, loc: storage))
# class labels variable
X = torch.FloatTensor(FLAGS.batch_size, FLAGS.num_channels, FLAGS.image_size, FLAGS.image_size)
class_labels = torch.LongTensor(FLAGS.batch_size)
# test
if torch.cuda.is_available() and not FLAGS.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
# load data set and create data loader instance
print('Loading MNIST dataset...')
mnist = datasets.MNIST(root='mnist', download=True, train=True, transform=transform_config)
loader = cycle(DataLoader(mnist, batch_size=FLAGS.batch_size, shuffle=True, num_workers=0, drop_last=True))
style_classifier = Classifier(z_dim=FLAGS.style_dim, num_classes=FLAGS.num_classes)
style_classifier.apply(weights_init)
class_classifier = Classifier(z_dim=FLAGS.class_dim, num_classes=FLAGS.num_classes)
class_classifier.apply(weights_init)
cross_entropy_loss = nn.CrossEntropyLoss()
style_classifier_optimizer = optim.Adam(
list(style_classifier.parameters()),
lr=FLAGS.initial_learning_rate,
betas=(FLAGS.beta_1, FLAGS.beta_2)
)
class_classifier_optimizer = optim.Adam(
list(class_classifier.parameters()),
lr=FLAGS.initial_learning_rate,
betas=(FLAGS.beta_1, FLAGS.beta_2)
)
if FLAGS.cuda:
encoder.cuda()
decoder.cuda()
style_classifier.cuda()
class_classifier.cuda()
X = X.cuda()
class_labels = class_labels.cuda()
count = 0
# training
for i in range(0, FLAGS.end_iteration):
image_batch, labels_batch = next(loader)
class_labels.copy_(labels_batch)
X.copy_(image_batch)
style_mu, style_logvar, class_mu, class_logvar = encoder(Variable(X))
style_latent_embeddings = reparameterize(training=True, mu=style_mu, logvar=style_logvar)
if FLAGS.accumulate_evidence:
grouped_mu, grouped_logvar = accumulate_group_evidence(
class_mu.data, class_logvar.data, labels_batch, FLAGS.cuda
)
class_latent_embeddings = group_wise_reparameterize(
training=True, mu=grouped_mu, logvar=grouped_logvar, labels_batch=labels_batch, cuda=FLAGS.cuda
)
else:
class_latent_embeddings = reparameterize(training=True, mu=class_mu, logvar=class_logvar)
style_classifier_optimizer.zero_grad()
# Style
style_classifier_pred = style_classifier(style_latent_embeddings)
style_classification_error = cross_entropy_loss(style_classifier_pred, Variable(class_labels))
style_classification_error.backward(retain_graph=True)
_, style_classifier_pred = torch.max(style_classifier_pred, 1)
style_classifier_accuracy = (style_classifier_pred.data == class_labels).sum().item() / FLAGS.batch_size
style_classifier_optimizer.step()
class_classifier_optimizer.zero_grad()
# Class
class_classifier_pred = class_classifier(class_latent_embeddings)
class_classification_error = cross_entropy_loss(class_classifier_pred, Variable(class_labels))
class_classification_error.backward()
_, class_classifier_pred = torch.max(class_classifier_pred, 1)
class_classifier_accuracy = (class_classifier_pred.data == class_labels).sum().item() / FLAGS.batch_size
class_classifier_optimizer.step()
if count % 100 == 0:
print('Count: ' + str(count))
print('Style classifier accuracy: ' + str(style_classifier_accuracy))
print('Class classifier accuracy: ' + str(class_classifier_accuracy))
print('\n')
count += 1
# load data set and create data loader instance
print('Loading MNIST dataset...')
mnist = datasets.MNIST(root='mnist', download=True, train=True, transform=transform_config)
loader = cycle(DataLoader(mnist, batch_size=FLAGS.batch_size, shuffle=True, num_workers=0, drop_last=True))
total_style_classifier_accuracy = 0.
total_class_classifier_accuracy = 0.
for i in range(0, FLAGS.num_train_samples // FLAGS.batch_size):
image_batch, labels_batch = next(loader)
class_labels.copy_(labels_batch)
X.copy_(image_batch)
style_mu, style_logvar, class_mu, class_logvar = encoder(Variable(X))
style_latent_embeddings = reparameterize(training=True, mu=style_mu, logvar=style_logvar)
if FLAGS.accumulate_evidence:
grouped_mu, grouped_logvar = accumulate_group_evidence(
class_mu.data, class_logvar.data, labels_batch, FLAGS.cuda
)
class_latent_embeddings = group_wise_reparameterize(
training=True, mu=grouped_mu, logvar=grouped_logvar, labels_batch=labels_batch, cuda=FLAGS.cuda
)
else:
class_latent_embeddings = reparameterize(training=True, mu=class_mu, logvar=class_logvar)
style_classifier_pred = style_classifier(style_latent_embeddings)
style_classification_error = cross_entropy_loss(style_classifier_pred, Variable(class_labels))
_, style_classifier_pred = torch.max(style_classifier_pred, 1)
style_classifier_accuracy = (style_classifier_pred.data == class_labels).sum().item() / FLAGS.batch_size
class_classifier_pred = class_classifier(class_latent_embeddings)
class_classification_error = cross_entropy_loss(class_classifier_pred, Variable(class_labels))
_, class_classifier_pred = torch.max(class_classifier_pred, 1)
class_classifier_accuracy = (class_classifier_pred.data == class_labels).sum().item() / FLAGS.batch_size
total_style_classifier_accuracy += style_classifier_accuracy
total_class_classifier_accuracy += class_classifier_accuracy
print('Style classifier train accuracy: ' + str(total_style_classifier_accuracy / (FLAGS.num_train_samples // FLAGS.batch_size)))
print('Class classifier train accuracy: ' + str(total_class_classifier_accuracy / (FLAGS.num_train_samples // FLAGS.batch_size)))
print('\n')
# load data set and create data loader instance
print('Loading MNIST dataset...')
mnist = datasets.MNIST(root='mnist', download=True, train=False, transform=transform_config)
loader = cycle(DataLoader(mnist, batch_size=FLAGS.batch_size, shuffle=True, num_workers=0, drop_last=True))
total_style_classifier_accuracy = 0.
total_class_classifier_accuracy = 0.
for i in range(0, FLAGS.num_test_samples // FLAGS.batch_size):
image_batch, labels_batch = next(loader)
class_labels.copy_(labels_batch)
X.copy_(image_batch)
style_mu, style_logvar, class_mu, class_logvar = encoder(Variable(X))
style_latent_embeddings = reparameterize(training=True, mu=style_mu, logvar=style_logvar)
if FLAGS.accumulate_evidence:
grouped_mu, grouped_logvar = accumulate_group_evidence(
class_mu.data, class_logvar.data, labels_batch, FLAGS.cuda
)
class_latent_embeddings = group_wise_reparameterize(
training=True, mu=grouped_mu, logvar=grouped_logvar, labels_batch=labels_batch, cuda=FLAGS.cuda
)
else:
class_latent_embeddings = reparameterize(training=True, mu=class_mu, logvar=class_logvar)
style_classifier_pred = style_classifier(style_latent_embeddings)
style_classification_error = cross_entropy_loss(style_classifier_pred, Variable(class_labels))
_, style_classifier_pred = torch.max(style_classifier_pred, 1)
style_classifier_accuracy = (style_classifier_pred.data == class_labels).sum().item() / FLAGS.batch_size
class_classifier_pred = class_classifier(class_latent_embeddings)
class_classification_error = cross_entropy_loss(class_classifier_pred, Variable(class_labels))
_, class_classifier_pred = torch.max(class_classifier_pred, 1)
class_classifier_accuracy = (class_classifier_pred.data == class_labels).sum().item() / FLAGS.batch_size
total_style_classifier_accuracy += style_classifier_accuracy
total_class_classifier_accuracy += class_classifier_accuracy
print('Style classifier test accuracy: ' + str(total_style_classifier_accuracy / (FLAGS.num_test_samples // FLAGS.batch_size)))
print('Class classifier test accuracy: ' + str(total_class_classifier_accuracy / (FLAGS.num_test_samples // FLAGS.batch_size)))