-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathpredict.py
147 lines (110 loc) · 5.16 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python
# coding: utf-8
import json
import tensorflow as tf
from data_utils import prepare_batch_predict_data
from model import Seq2SeqModel
from vocab import get_vocab, ints_to_sentence
# Data loading parameters
tf.app.flags.DEFINE_boolean('rev_data', True, 'Use reversed training data')
tf.app.flags.DEFINE_boolean('align_data', True, 'Use aligned training data')
tf.app.flags.DEFINE_boolean('prev_data', True, 'Use training data with previous sentences')
tf.app.flags.DEFINE_boolean('align_word2vec', True, 'Use aligned word2vec model')
# Decoding parameters
tf.app.flags.DEFINE_integer('beam_width', 1, 'Beam width used in beamsearch')
tf.app.flags.DEFINE_integer('decode_batch_size', 80, 'Batch size used for decoding')
tf.app.flags.DEFINE_integer('max_decode_step', 500, 'Maximum time step limit to decode')
tf.app.flags.DEFINE_boolean('write_n_best', False, 'Write n-best list (n=beam_width)')
tf.app.flags.DEFINE_string('model_path', None, 'Path to a specific model checkpoint.')
tf.app.flags.DEFINE_string('model_dir', None, 'Path to load model checkpoints')
tf.app.flags.DEFINE_string('predict_mode', 'greedy', 'Decode helper to use for predicting')
tf.app.flags.DEFINE_string('decode_input', 'data/newstest2012.bpe.de', 'Decoding input path')
tf.app.flags.DEFINE_string('decode_output', 'data/newstest2012.bpe.de.trans', 'Decoding output path')
# Runtime parameters
tf.app.flags.DEFINE_boolean('allow_soft_placement', True, 'Allow device soft placement')
tf.app.flags.DEFINE_boolean('log_device_placement', False, 'Log placement of ops on devices')
FLAGS = tf.app.flags.FLAGS
#json loads strings as unicode; we currently still work with Python 2 strings, and need conversion
def unicode_to_utf8(d):
return dict((key.encode("UTF-8"), value) for (key, value) in d.items())
def load_config(FLAGS):
if FLAGS.model_path is not None:
checkpoint_path = FLAGS.model_path
print 'Model path specified at: {}'.format(checkpoint_path)
elif FLAGS.model_dir is not None:
checkpoint_path = tf.train.latest_checkpoint(FLAGS.model_dir + '/')
print 'Model dir specified, using the latest checkpoint at: {}'.format(checkpoint_path)
else:
checkpoint_path = tf.train.latest_checkpoint('model/')
print 'Model path not specified, using the latest checkpoint at: {}'.format(checkpoint_path)
FLAGS.model_path = checkpoint_path
# Load config saved with model
config_unicode = json.load(open('%s.json' % FLAGS.model_path, 'rb'))
config = unicode_to_utf8(config_unicode)
# Overwrite flags
for key, value in FLAGS.__flags.items():
config[key] = value
return config
def load_model(session, model, saver):
if tf.train.checkpoint_exists(FLAGS.model_path):
print 'Reloading model parameters..'
model.restore(session, saver, FLAGS.model_path)
else:
raise ValueError(
'No such file:[{}]'.format(FLAGS.model_path))
return model
class Seq2SeqPredictor:
def __init__(self):
# Load model config
config = load_config(FLAGS)
config_proto = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement,
gpu_options=tf.GPUOptions(allow_growth=True)
)
self.sess = tf.Session(config=config_proto)
# Build the model
self.model = Seq2SeqModel(config, 'predict')
# Create saver
# Using var_list = None returns the list of all saveable variables
saver = tf.train.Saver(var_list=None)
# Reload existing checkpoint
load_model(self.sess, self.model, saver)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.sess.close()
def predict(self, keywords):
sentences = []
for keyword in keywords:
source, source_len = prepare_batch_predict_data(keyword,
previous=sentences,
prev=FLAGS.prev_data,
rev=FLAGS.rev_data,
align=FLAGS.align_data)
predicted_batch = self.model.predict(
self.sess,
encoder_inputs=source,
encoder_inputs_length=source_len
)
predicted_line = predicted_batch[0] # predicted is a batch of one line
predicted_line_clean = predicted_line[:-1] # remove the end token
predicted_ints = map(lambda x: x[0], predicted_line_clean) # Flatten from [time_step, 1] to [time_step]
predicted_sentence = ints_to_sentence(predicted_ints)
if FLAGS.rev_data:
predicted_sentence = predicted_sentence[::-1]
sentences.append(predicted_sentence)
return sentences
def main(_):
KEYWORDS = [
u'楚',
u'收拾',
u'思乡',
u'相随'
]
with Seq2SeqPredictor() as predictor:
lines = predictor.predict(KEYWORDS)
for line in lines:
print line
if __name__ == '__main__':
tf.app.run()