-
Notifications
You must be signed in to change notification settings - Fork 21
/
main.c
1285 lines (1145 loc) · 30.7 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* MemTest86+ V5 Specific code (GPL V2.0)
* By Samuel DEMEULEMEESTER, [email protected]
* http://www.canardpc.com - http://www.memtest.org
* ------------------------------------------------
* main.c - MemTest-86 Version 3.5
*
* Released under version 2 of the Gnu Public License.
* By Chris Brady
*/
#include "stdint.h"
#include "stddef.h"
#include "test.h"
#include "defs.h"
#include "cpuid.h"
#include "smp.h"
#include "config.h"
#undef TEST_TIMES
#define DEFTESTS 9
#define FIRST_DIVISER 3
/* The main stack is allocated during boot time. The stack size should
* preferably be a multiple of page size(4Kbytes)
*/
extern struct cpu_ident cpu_id;
extern char toupper(char c);
extern int isxdigit(char c);
extern void reboot();
extern void bzero();
extern void smp_set_ordinal(int me, int ord);
extern int smp_my_ord_num(int me);
extern int smp_ord_to_cpu(int me);
extern void get_cpuid();
extern void initialise_cpus();
extern ulong rand(int cpu);
extern void get_mem_speed(int cpu, int ncpus);
extern void rand_seed(unsigned int seed1, unsigned int seed2, int cpu);
extern struct barrier_s *barr;
extern int num_cpus;
extern int act_cpus;
static int find_ticks_for_test(int test);
void find_ticks_for_pass(void);
int find_chunks(int test);
static void test_setup(void);
static int compute_segments(struct pmap map, int cpu);
int do_test(int ord);
struct tseq tseq[] = {
{1, -1, 0, 6, 0, "[Address test, walking ones, no cache] "},
{1, -1, 1, 6, 0, "[Address test, own address Sequential] "},
{1, 32, 2, 6, 0, "[Address test, own address Parallel] "},
{1, 32, 3, 6, 0, "[Moving inversions, 1s & 0s Parallel] "},
{1, 32, 5, 3, 0, "[Moving inversions, 8 bit pattern] "},
{1, 32, 6, 30, 0, "[Moving inversions, random pattern] "},
{1, 32, 7, 81, 0, "[Block move] "},
{1, 1, 8, 3, 0, "[Moving inversions, 32 bit pattern] "},
{1, 32, 9, 48, 0, "[Random number sequence] "},
{1, 32, 10, 6, 0, "[Modulo 20, Random pattern] "},
{1, 1, 11, 240, 0, "[Bit fade test, 2 patterns] "},
{1, 0, 0, 0, 0, NULL}
};
volatile int mstr_cpu;
volatile int run_cpus;
volatile int cpu_ord=0;
int maxcpus=MAX_CPUS;
volatile short cpu_sel;
volatile short cpu_mode;
char cpu_mask[MAX_CPUS];
long bin_mask=0xffffffff;
short onepass;
volatile short btflag = 0;
volatile int test;
short restart_flag;
bool reloc_pending = FALSE;
uint8_t volatile stacks[MAX_CPUS][STACKSIZE];
int bitf_seq = 0;
char cmdline_parsed = 0;
struct vars variables = {};
struct vars * const v = &variables;
volatile int bail;
int nticks;
int test_ticks;
volatile int segs;
static int ltest;
static int pass_flag = 0;
volatile short start_seq = 0;
static int c_iter;
ulong high_test_adr;
volatile static int window;
volatile static unsigned long win_next;
volatile static ulong win0_start; /* Start test address for window 0 */
volatile static ulong win1_end; /* End address for relocation */
volatile static struct pmap winx; /* Window struct for mapping windows */
/* Find the next selected test to run */
void next_test()
{
test++;
while (tseq[test].sel == 0 && tseq[test].cpu_sel != 0) {
test++;
}
if (tseq[test].cpu_sel == 0) {
/* We hit the end of the list so we completed a pass */
pass_flag++;
/* Find the next test to run, start searching from 0 */
test = 0;
while (tseq[test].sel == 0 && tseq[test].cpu_sel != 0) {
test++;
}
}
}
/* Set default values for all parameters */
void set_defaults()
{
int i;
if (start_seq == 2) {
/* This is a restart so we reset everything */
onepass = 0;
i = 0;
while (tseq[i].cpu_sel) {
tseq[i].sel = 1;
i++;
}
test = 0;
if (tseq[0].sel == 0) {
next_test();
}
}
ltest = -1;
win_next = 0;
window = 0;
bail = 0;
cpu_mode = CPM_ALL;
cpu_sel = 0;
v->printmode=PRINTMODE_ADDRESSES;
v->numpatn=0;
v->plim_lower = 0;
v->plim_upper = v->pmap[v->msegs-1].end;
v->pass = 0;
v->msg_line = 0;
v->ecount = 0;
v->ecc_ecount = 0;
v->msg_line = LINE_SCROLL-1;
v->scroll_start = v->msg_line * 160;
v->erri.low_addr.page = 0x7fffffff;
v->erri.low_addr.offset = 0xfff;
v->erri.high_addr.page = 0;
v->erri.high_addr.offset = 0;
v->erri.min_bits = 32;
v->erri.max_bits = 0;
v->erri.min_bits = 32;
v->erri.max_bits = 0;
v->erri.maxl = 0;
v->erri.cor_err = 0;
v->erri.ebits = 0;
v->erri.hdr_flag = 0;
v->erri.tbits = 0;
for (i=0; tseq[i].msg != NULL; i++) {
tseq[i].errors = 0;
}
restart_flag = 0;
tseq[10].sel = 0;
}
/* Boot trace function */
short tidx = 25;
void btrace(int me, int line, char *msg, int wait, long v1, long v2)
{
int y, x;
/* Is tracing turned on? */
if (btflag == 0) return;
spin_lock(&barr->mutex);
y = tidx%13;
x = tidx/13*40;
cplace(y+11, x+1, ' ');
if (++tidx > 25) {
tidx = 0;
}
y = tidx%13;
x = tidx/13*40;
cplace(y+11, x+1, '>');
dprint(y+11, x+2, me, 2, 0);
dprint(y+11, x+5, line, 4, 0);
cprint(y+11, x+10, msg);
hprint(y+11, x+22, v1);
hprint(y+11, x+31, v2);
if (wait) {
wait_keyup();
}
spin_unlock(&barr->mutex);
}
/* Relocate the test to a new address. Be careful to not overlap! */
static void run_at(unsigned long addr, int cpu)
{
ulong *ja = (ulong *)(addr + startup_32 - _start);
/* CPU 0, Copy memtest86+ code */
if (cpu == 0) {
memmove((void *)addr, &_start, _end - _start);
}
/* Wait for the copy */
barrier();
/* We use a lock to insure that only one CPU at a time jumps to
* the new code. Some of the startup stuff is not thread safe! */
spin_lock(&barr->mutex);
/* Jump to the start address */
goto *ja;
}
/* Switch from the boot stack to the main stack. First the main stack
* is allocated, then the contents of the boot stack are copied, then
* ESP is adjusted to point to the new stack.
*/
static void
switch_to_main_stack(unsigned cpu_num)
{
extern uintptr_t boot_stack;
extern uintptr_t boot_stack_top;
uintptr_t *src, *dst;
int offs;
uint8_t * stackAddr, *stackTop;
stackAddr = (uint8_t *) &stacks[cpu_num][0];
stackTop = stackAddr + STACKSIZE;
src = (uintptr_t*)&boot_stack_top;
dst = (uintptr_t*)stackTop;
do {
src--; dst--;
*dst = *src;
} while ((uintptr_t *)src > (uintptr_t *)&boot_stack);
offs = (uint8_t *)&boot_stack_top - stackTop;
__asm__ __volatile__ (
"subl %%eax, %%esp"
: /*no output*/
: "a" (offs) : "memory"
);
}
void reloc_internal(int cpu)
{
/* clear variables */
reloc_pending = FALSE;
run_at(LOW_TEST_ADR, cpu);
}
void reloc(void)
{
bail++;
reloc_pending = TRUE;
}
/* command line passing using the 'old' boot protocol */
#define MK_PTR(seg,off) ((void*)(((unsigned long)(seg) << 4) + (off)))
#define OLD_CL_MAGIC_ADDR ((unsigned short*) MK_PTR(INITSEG,0x20))
#define OLD_CL_MAGIC 0xA33F
#define OLD_CL_OFFSET_ADDR ((unsigned short*) MK_PTR(INITSEG,0x22))
static void parse_command_line(void)
{
long simple_strtoul(char *cmd, char *ptr, int base);
char *cp, dummy;
int i, j, k;
if (cmdline_parsed)
return;
/* Fill in the cpu mask array with the default */
for (i=0; i<MAX_CPUS; i++) {
cpu_mask[i] = 1;
}
if (*OLD_CL_MAGIC_ADDR != OLD_CL_MAGIC)
return;
unsigned short offset = *OLD_CL_OFFSET_ADDR;
cp = MK_PTR(INITSEG, offset);
/* skip leading spaces */
while (*cp == ' ')
cp++;
while (*cp) {
if (!strncmp(cp, "console=", 8)) {
cp += 8;
serial_console_setup(cp);
}
/* Enable boot trace? */
if (!strncmp(cp, "btrace", 6)) {
cp += 6;
btflag++;
}
/* Limit number of CPUs */
if (!strncmp(cp, "maxcpus=", 8)) {
cp += 8;
maxcpus=(int)simple_strtoul(cp, &dummy, 10);
}
/* Run one pass and exit if there are no errors */
if (!strncmp(cp, "onepass", 7)) {
cp += 7;
onepass++;
}
/* Setup a list of tests to run */
if (!strncmp(cp, "tstlist=", 8)) {
cp += 8;
/* Clear all of the tests first */
k = 0;
while (tseq[k].cpu_sel) {
tseq[k].sel = 0;
k++;
}
/* Now enable all of the tests in the list */
j = 0;
while(*cp && isdigit(*cp)) {
i = *cp-'0';
j = j*10 + i;
cp++;
if (*cp == ',' || !isdigit(*cp)) {
if (j < k) {
tseq[j].sel = 1;
}
if (*cp != ',') break;
j = 0;
cp++;
}
}
}
/* Set a CPU mask to select CPU's to use for testing */
if (!strncmp(cp, "cpumask=", 8)) {
cp += 8;
if (cp[0] == '0' && toupper(cp[1]) == 'X') cp += 2;
while (*cp && *cp != ' ' && isxdigit(*cp)) {
i = isdigit(*cp) ? *cp-'0' : toupper(*cp)-'A'+10;
bin_mask = bin_mask * 16 + i;
cp++;
}
/* Force CPU zero to always be selected */
bin_mask |= 1;
for (i=0; i<32; i++) {
if (((bin_mask>>i) & 1) == 0) {
cpu_mask[i] = 0;
}
}
}
/* go to the next parameter */
while (*cp && *cp != ' ') cp++;
while (*cp == ' ') cp++;
}
cmdline_parsed = 1;
}
void clear_screen()
{
int i;
char *pp;
/* Clear screen & set background to blue */
for(i=0, pp=(char *)(SCREEN_ADR); i<80*25; i++) {
*pp++ = ' ';
*pp++ = 0x17;
}
if (btflag) {
cprint(1, 0, "Boot Trace Enabled");
cprint(1, 0, "Press any key to advance to next trace point");
cprint(9, 1,"CPU Line Message Param #1 Param #2 CPU Line Message Param #1 Param #2");
cprint(10,1,"--- ---- ----------- -------- -------- --- ---- ----------- -------- --------");
}
}
/* This is the test entry point. We get here on statup and also whenever
* we relocate. */
void test_start(void)
{
int my_cpu_num, my_cpu_ord, run;
/* If this is the first time here we are CPU 0 */
if (start_seq == 0) {
my_cpu_num = 0;
} else {
my_cpu_num = smp_my_cpu_num();
}
/* First thing, switch to main stack */
switch_to_main_stack(my_cpu_num);
/* First time (for this CPU) initialization */
if (start_seq < 2) {
/* These steps are only done by the boot cpu */
if (my_cpu_num == 0) {
my_cpu_ord = cpu_ord++;
smp_set_ordinal(my_cpu_num, my_cpu_ord);
parse_command_line();
clear_screen();
/* Initialize the barrier so the lock in btrace will work.
* Will get redone later when we know how many CPUs we have */
barrier_init(1);
btrace(my_cpu_num, __LINE__, "Begin ", 1, 0, 0);
/* Find memory size */
mem_size(); /* must be called before initialise_cpus(); */
/* Fill in the CPUID table */
get_cpuid();
/* Startup the other CPUs */
start_seq = 1;
//initialise_cpus();
btrace(my_cpu_num, __LINE__, "BeforeInit", 1, 0, 0);
/* Draw the screen and get system information */
init();
/* Set defaults and initialize variables */
set_defaults();
/* Setup base address for testing, 1 MB */
win0_start = 0x100;
/* Set relocation address to 32Mb if there is enough
* memory. Otherwise set it to 3Mb */
/* Large reloc addr allows for more testing overlap */
if ((ulong)v->pmap[v->msegs-1].end > 0x2f00) {
high_test_adr = 0x2000000;
} else {
high_test_adr = 0x300000;
}
win1_end = (high_test_adr >> 12);
/* Adjust the map to not test the page at 939k,
* reserved for locks */
v->pmap[0].end--;
find_ticks_for_pass();
} else {
/* APs only, Register the APs */
btrace(my_cpu_num, __LINE__, "AP_Start ", 0, my_cpu_num,
cpu_ord);
smp_ap_booted(my_cpu_num);
/* Asign a sequential CPU ordinal to each active cpu */
spin_lock(&barr->mutex);
my_cpu_ord = cpu_ord++;
smp_set_ordinal(my_cpu_num, my_cpu_ord);
spin_unlock(&barr->mutex);
btrace(my_cpu_num, __LINE__, "AP_Done ", 0, my_cpu_num,
my_cpu_ord);
}
} else {
/* Unlock after a relocation */
spin_unlock(&barr->mutex);
/* Get the CPU ordinal since it is lost during relocation */
my_cpu_ord = smp_my_ord_num(my_cpu_num);
btrace(my_cpu_num, __LINE__, "Reloc_Done",0,my_cpu_num,my_cpu_ord);
}
/* A barrier to insure that all of the CPUs are done with startup */
barrier();
btrace(my_cpu_num, __LINE__, "1st Barr ", 1, my_cpu_num, my_cpu_ord);
/* Setup Memory Management and measure memory speed, we do it here
* because we need all of the available CPUs */
if (start_seq < 2) {
/* Enable floating point processing */
if (cpu_id.fid.bits.fpu)
__asm__ __volatile__ (
"movl %%cr0, %%eax\n\t"
"andl $0x7, %%eax\n\t"
"movl %%eax, %%cr0\n\t"
: :
: "ax"
);
if (cpu_id.fid.bits.sse)
__asm__ __volatile__ (
"movl %%cr4, %%eax\n\t"
"orl $0x00000200, %%eax\n\t"
"movl %%eax, %%cr4\n\t"
: :
: "ax"
);
btrace(my_cpu_num, __LINE__, "Mem Mgmnt ", 1, cpu_id.fid.bits.pae, cpu_id.fid.bits.lm);
/* Setup memory management modes */
/* If we have PAE, turn it on */
if (cpu_id.fid.bits.pae == 1) {
__asm__ __volatile__(
"movl %%cr4, %%eax\n\t"
"orl $0x00000020, %%eax\n\t"
"movl %%eax, %%cr4\n\t"
: :
: "ax"
);
cprint(LINE_TITLE+1, COL_MODE, "(PAE Mode)");
}
/* If this is a 64 CPU enable long mode */
if (cpu_id.fid.bits.lm == 1) {
__asm__ __volatile__(
"movl $0xc0000080, %%ecx\n\t"
"rdmsr\n\t"
"orl $0x00000100, %%eax\n\t"
"wrmsr\n\t"
: :
: "ax", "cx"
);
cprint(LINE_TITLE+1, COL_MODE, "(X64 Mode)");
}
/* Get the memory Speed with all CPUs */
get_mem_speed(my_cpu_num, num_cpus);
}
/* Set the initialized flag only after all of the CPU's have
* Reached the barrier. This insures that relocation has
* been completed for each CPU. */
btrace(my_cpu_num, __LINE__, "Start Done", 1, 0, 0);
start_seq = 2;
/* Loop through all tests */
while (1) {
/* If the restart flag is set all initial params */
if (restart_flag) {
set_defaults();
continue;
}
/* Skip single CPU tests if we are using only one CPU */
if (tseq[test].cpu_sel == -1 &&
(num_cpus == 1 || cpu_mode != CPM_ALL)) {
test++;
continue;
}
test_setup();
/* Loop through all possible windows */
while (win_next <= ((ulong)v->pmap[v->msegs-1].end + WIN_SZ)) {
/* Main scheduling barrier */
cprint(8, my_cpu_num+7, "W");
btrace(my_cpu_num, __LINE__, "Sched_Barr", 1,window,win_next);
barrier();
/* Don't go over the 8TB PAE limit */
if (win_next > MAX_MEM) {
break;
}
/* For the bit fade test, #11, we cannot relocate so bump the
* window to 1 */
if (tseq[test].pat == 11 && window == 0) {
window = 1;
}
/* Relocate if required */
if (window != 0 && (ulong)&_start != LOW_TEST_ADR) {
btrace(my_cpu_num, __LINE__, "Sched_RelL", 1,0,0);
run_at(LOW_TEST_ADR, my_cpu_num);
}
if (window == 0 && v->plim_lower >= win0_start) {
window++;
}
if (window == 0 && (ulong)&_start == LOW_TEST_ADR) {
btrace(my_cpu_num, __LINE__, "Sched_RelH", 1,0,0);
run_at(high_test_adr, my_cpu_num);
}
/* Decide which CPU(s) to use */
btrace(my_cpu_num, __LINE__, "Sched_CPU0",1,cpu_sel,
tseq[test].cpu_sel);
run = 1;
switch(cpu_mode) {
case CPM_RROBIN:
case CPM_SEQ:
/* Select a single CPU */
if (my_cpu_ord == cpu_sel) {
mstr_cpu = cpu_sel;
run_cpus = 1;
} else {
run = 0;
}
break;
case CPM_ALL:
/* Use all CPUs */
if (tseq[test].cpu_sel == -1) {
/* Round robin through all of the CPUs */
if (my_cpu_ord == cpu_sel) {
mstr_cpu = cpu_sel;
run_cpus = 1;
} else {
run = 0;
}
} else {
/* Use the number of CPUs specified by the test,
* Starting with zero */
if (my_cpu_ord >= tseq[test].cpu_sel) {
run = 0;
}
/* Set the master CPU to the highest CPU number
* that has been selected */
if (act_cpus < tseq[test].cpu_sel) {
mstr_cpu = act_cpus-1;
run_cpus = act_cpus;
} else {
mstr_cpu = tseq[test].cpu_sel-1;
run_cpus = tseq[test].cpu_sel;
}
}
}
btrace(my_cpu_num, __LINE__, "Sched_CPU1",1,run_cpus,run);
barrier();
dprint(9, 7, run_cpus, 2, 0);
/* Setup a sub barrier for only the selected CPUs */
if (my_cpu_ord == mstr_cpu) {
s_barrier_init(run_cpus);
}
/* Make sure the the sub barrier is ready before proceeding */
barrier();
/* Not selected CPUs go back to the scheduling barrier */
if (run == 0 ) {
continue;
}
cprint(8, my_cpu_num+7, "-");
btrace(my_cpu_num, __LINE__, "Sched_Win0",1,window,win_next);
/* Do we need to exit */
if(reloc_pending) {
reloc_internal(my_cpu_num);
}
if (my_cpu_ord == mstr_cpu) {
switch (window) {
/* Special case for relocation */
case 0:
winx.start = 0;
winx.end = win1_end;
window++;
break;
/* Special case for first segment */
case 1:
winx.start = win0_start;
winx.end = WIN_SZ;
win_next += WIN_SZ;
window++;
break;
/* For all other windows */
default:
winx.start = win_next;
win_next += WIN_SZ;
winx.end = win_next;
}
btrace(my_cpu_num,__LINE__,"Sched_Win1",1,winx.start,
winx.end);
/* Find the memory areas to test */
segs = compute_segments(winx, my_cpu_num);
}
s_barrier();
btrace(my_cpu_num,__LINE__,"Sched_Win2",1,segs,
v->map[0].pbase_addr);
if (segs == 0) {
/* No memory in this window so skip it */
continue;
}
/* map in the window... */
if (map_page(v->map[0].pbase_addr) < 0) {
/* Either there is no PAE or we are at the PAE limit */
break;
}
btrace(my_cpu_num, __LINE__, "Strt_Test ",1,my_cpu_num,
my_cpu_ord);
do_test(my_cpu_ord);
btrace(my_cpu_num, __LINE__, "End_Test ",1,my_cpu_num,
my_cpu_ord);
paging_off();
} /* End of window loop */
s_barrier();
btrace(my_cpu_num, __LINE__, "End_Win ",1,test, window);
/* Setup for the next set of windows */
win_next = 0;
window = 0;
bail = 0;
/* Only the master CPU does the end of test housekeeping */
if (my_cpu_ord != mstr_cpu) {
continue;
}
/* Special handling for the bit fade test #11 */
if (tseq[test].pat == 11 && bitf_seq != 6) {
/* Keep going until the sequence is complete. */
bitf_seq++;
continue;
} else {
bitf_seq = 0;
}
/* Select advancement of CPUs and next test */
switch(cpu_mode) {
case CPM_RROBIN:
if (++cpu_sel >= act_cpus) {
cpu_sel = 0;
}
next_test();
break;
case CPM_SEQ:
if (++cpu_sel >= act_cpus) {
cpu_sel = 0;
next_test();
}
break;
case CPM_ALL:
if (tseq[test].cpu_sel == -1)
{
/* Do the same test for each CPU */
if (++cpu_sel >= act_cpus)
{
cpu_sel = 0;
next_test();
} else {
continue;
}
} else {
next_test();
}
} //????
btrace(my_cpu_num, __LINE__, "Next_CPU ",1,cpu_sel,test);
/* If this was the last test then we finished a pass */
if (pass_flag)
{
pass_flag = 0;
v->pass++;
dprint(LINE_INFO, 49, v->pass, 5, 0);
find_ticks_for_pass();
ltest = -1;
if (v->ecount == 0)
{
/* If onepass is enabled and we did not get any errors
* reboot to exit the test */
if (onepass) { reboot(); }
if (!btflag) cprint(LINE_MSG, COL_MSG-8, "** Pass complete, no errors, press Esc to exit **");
if(BEEP_END_NO_ERROR)
{
beep(1000);
beep(2000);
beep(1000);
beep(2000);
}
}
}
bail=0;
} /* End test loop */
}
void test_setup()
{
static int ltest = -1;
/* See if a specific test has been selected */
if (v->testsel >= 0) {
test = v->testsel;
}
/* Only do the setup if this is a new test */
if (test == ltest) {
return;
}
ltest = test;
/* Now setup the test parameters based on the current test number */
if (v->pass == 0) {
/* Reduce iterations for first pass */
c_iter = tseq[test].iter/FIRST_DIVISER;
} else {
c_iter = tseq[test].iter;
}
/* Set the number of iterations. We only do half of the iterations */
/* on the first pass */
//dprint(LINE_INFO, 28, c_iter, 3, 0);
test_ticks = find_ticks_for_test(test);
nticks = 0;
v->tptr = 0;
cprint(LINE_PAT, COL_PAT, " ");
cprint(LINE_PAT, COL_PAT-3, " ");
dprint(LINE_TST, COL_MID+6, tseq[test].pat, 2, 1);
cprint(LINE_TST, COL_MID+9, tseq[test].msg);
cprint(2, COL_MID+8, " ");
}
/* A couple static variables for when all cpus share the same pattern */
static ulong sp1, sp2;
int do_test(int my_ord)
{
int i=0, j=0;
static int bitf_sleep;
unsigned long p0=0, p1=0, p2=0;
if (my_ord == mstr_cpu) {
if ((ulong)&_start > LOW_TEST_ADR) {
/* Relocated so we need to test all selected lower memory */
v->map[0].start = mapping(v->plim_lower);
/* Good 'ol Legacy USB_WAR */
if (v->map[0].start < (ulong*)0x500)
{
v->map[0].start = (ulong*)0x500;
}
cprint(LINE_PAT, COL_MID+25, " R");
} else {
cprint(LINE_PAT, COL_MID+25, " ");
}
/* Update display of memory segments being tested */
p0 = page_of(v->map[0].start);
p1 = page_of(v->map[segs-1].end);
aprint(LINE_RANGE, COL_MID+9, p0);
cprint(LINE_RANGE, COL_MID+14, " - ");
aprint(LINE_RANGE, COL_MID+17, p1);
aprint(LINE_RANGE, COL_MID+25, p1-p0);
cprint(LINE_RANGE, COL_MID+30, " of ");
aprint(LINE_RANGE, COL_MID+34, v->selected_pages);
}
switch(tseq[test].pat) {
/* Do the testing according to the selected pattern */
case 0: /* Address test, walking ones (test #0) */
/* Run with cache turned off */
set_cache(0);
addr_tst1(my_ord);
set_cache(1);
BAILOUT;
break;
case 1:
case 2: /* Address test, own address (test #1, 2) */
addr_tst2(my_ord);
BAILOUT;
break;
case 3:
case 4: /* Moving inversions, all ones and zeros (tests #3, 4) */
p1 = 0;
p2 = ~p1;
s_barrier();
movinv1(c_iter,p1,p2,my_ord);
BAILOUT;
/* Switch patterns */
s_barrier();
movinv1(c_iter,p2,p1,my_ord);
BAILOUT;
break;
case 5: /* Moving inversions, 8 bit walking ones and zeros (test #5) */
p0 = 0x80;
for (i=0; i<8; i++, p0=p0>>1) {
p1 = p0 | (p0<<8) | (p0<<16) | (p0<<24);
p2 = ~p1;
s_barrier();
movinv1(c_iter,p1,p2, my_ord);
BAILOUT;
/* Switch patterns */
s_barrier();
movinv1(c_iter,p2,p1, my_ord);
BAILOUT
}
break;
case 6: /* Random Data (test #6) */
/* Seed the random number generator */
if (my_ord == mstr_cpu) {
if (cpu_id.fid.bits.rdtsc) {
asm __volatile__ ("rdtsc":"=a" (sp1),"=d" (sp2));
} else {
sp1 = 521288629 + v->pass;
sp2 = 362436069 - v->pass;
}
rand_seed(sp1, sp2, 0);
}
s_barrier();
for (i=0; i < c_iter; i++) {
if (my_ord == mstr_cpu) {
sp1 = rand(0);
sp2 = ~p1;
}
s_barrier();
movinv1(2,sp1,sp2, my_ord);
BAILOUT;
}
break;
case 7: /* Block move (test #7) */
block_move(c_iter, my_ord);
BAILOUT;
break;
case 8: /* Moving inversions, 32 bit shifting pattern (test #8) */
for (i=0, p1=1; p1; p1=p1<<1, i++) {
s_barrier();
movinv32(c_iter,p1, 1, 0x80000000, 0, i, my_ord);
BAILOUT
s_barrier();
movinv32(c_iter,~p1, 0xfffffffe,
0x7fffffff, 1, i, my_ord);
BAILOUT
}
break;
case 9: /* Random Data Sequence (test #9) */
for (i=0; i < c_iter; i++) {
s_barrier();
movinvr(my_ord);
BAILOUT;
}
break;
case 10: /* Modulo 20 check, Random pattern (test #10) */
for (j=0; j<c_iter; j++) {
p1 = rand(0);
for (i=0; i<MOD_SZ; i++) {
p2 = ~p1;
s_barrier();
modtst(i, 2, p1, p2, my_ord);
BAILOUT
/* Switch patterns */
s_barrier();
modtst(i, 2, p2, p1, my_ord);
BAILOUT
}
}
break;
case 11: /* Bit fade test, fill (test #11) */
/* Use a sequence to process all windows for each stage */
switch(bitf_seq) {
case 0: /* Fill all of memory 0's */
bit_fade_fill(0, my_ord);
bitf_sleep = 1;
break;
case 1: /* Sleep for the specified time */
/* Only sleep once */
if (bitf_sleep) {
sleep(c_iter, 1, my_ord, 0);
bitf_sleep = 0;
}
break;
case 2: /* Now check all of memory for changes */
bit_fade_chk(0, my_ord);
break;
case 3: /* Fill all of memory 1's */
bit_fade_fill(-1, my_ord);
bitf_sleep = 1;
break;
case 4: /* Sleep for the specified time */
/* Only sleep once */
if (bitf_sleep) {
sleep(c_iter, 1, my_ord, 0);
bitf_sleep = 0;
}
break;
case 5: /* Now check all of memory for changes */
bit_fade_chk(-1, my_ord);